
Interpretation:
The wavelength
Concept Introduction:
The wave nature of any light can be described by its frequency, wavelength, and amplitude. The wavelength
The relation between frequency
Here,
The relation between the energy
Here,
The expression to calculate the energy of each wave function for any atomic species with one electron is as follows:
Here,

Answer to Problem 7.67QE
The wavelength of the line of hydrogen spectrum for a given transition is
Explanation of Solution
Substitute 3 for
Substitute 1 for
The expression to calculate the energy released in the transition from
Substitute
Therefore, the energy released in the given transition is
Substitute
Rearrange equation (5) to calculate the value of
Substitute
Since the wavelength of transition is
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: Principles and Practice
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





