
Concept explainers
(a)
Interpretation:
The sketch of contour surface for orbital with
Concept Introduction:
Erwin Schrödinger gave a model to describe the behavior of an electron in atoms through a wave function. The wave function is defined as a mathematical function for an electron wave that gives the amplitude of the wave at any point in space. It is represented by a Greek letter
The wave function of an electron has no physical significance but when the square of its absolute magnitude takes then it gives a probability of finding the electron at any particular point of time.
The expression of the probability of finding electrons is as follows:
The acceptable wave function is characterized by a set of four quantum numbers. These quantum numbers are related to the shape, size of the electron wave and the location of the electron in space.
1. These quantum numbers are represented by
2. The notation of subshell is used to determine by a combination of both principal quantum number and angular quantum number. In notation, numerical values of
3. The quantum number
4. The quantum number
(b)
Interpretation:
The sketch of contour surface for
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The sketch of contour surface for
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The sketch of contour surface for orbital with
Concept Introduction:
Refer to part (a).
(e)
Interpretation:
The sketch of contour surface for orbital with
Concept Introduction:
Refer to part (a).

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Chemistry: Principles and Practice
- What is the relationship between the limiting reactant and theoretical yield of CO2?arrow_forwardFrom your calculations, which reaction experiment had closest to stoichiometric quantities? How many moles of NaHCO3 and HC2H3O2 were present in this reaction?arrow_forward18. Arrange the following carbocations in order of decreasing stability. 1 2 A 3124 B 4213 C 2431 D 1234 E 2134 SPL 3 4arrow_forward
- Acetic acid is added to DI water at an initial concentration of 10 -6 M (Ka=1.8x10-5) A. Using the "ICE" Method, what would the pH be at equilibrium? State assumptions and show your work. B. Using the simultaneous equations method, what would the pH be at equilibrium? Show your workarrow_forward1. Show that the change in entropy for a fixed amount of ideal gas held at a constant temperature undergoing a volume change is given by the simple equation AS = NkB In Hint: Start with the equation M dS = du + (Œ) dv - Ž (#) an, dU du+av-dN; j=1 Why doesn't the equation for the entropy of an ideal gas depend on the strength of the intermolecular forces for the gas?arrow_forward2. Make an ice cube at 1 bar pressure by freezing an amount of liquid water that is 2 cm x 2 cm x 2 cm in volume. The density of liquid water at 0 °C is 1.000 g cm³ and the density of ice at 0 °C is 0.915 g cm³. Note that this difference in density is the reason your water pipes burst if they freeze and why you shouldn't forget to take your bottle of pop out of the freezer if you put it in there to try and cool it down faster. A. What is the work of expansion upon freezing? B. Is work done on the system or by the system?arrow_forward
- I have a excitation/emission spectra of a quinine standard solution here, and I'm having trouble interpreting it. the red line is emission the blue line is excitation. i'm having trouble interpreting properly. just want to know if there is any evidence of raman or rayleigh peaks in the spectra.arrow_forwardGive the major product of the following reaction. excess 1. OH, H₂O 1.OH H CH3CH2CH21 H 2. A.-H₂O Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by default.arrow_forward2. Use Hess's law to calculate the AH (in kJ) for: rxn CIF(g) + F2(g) → CIF 3 (1) using the following information: 2CIF(g) + O2(g) → Cl₂O(g) + OF 2(g) AH = 167.5 kJ ΔΗ 2F2 (g) + O2(g) → 2 OF 2(g) 2C1F3 (1) + 202(g) → Cl₂O(g) + 3 OF 2(g) о = = -43.5 kJ AH = 394.1kJarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
