Concept explainers
Consider the velocity field given by
- (a) Determine the fluid rotation.
- (b) Evaluate the circulation about the “curve” bounded by y = 0, x = 1, y = 1 and x = 0.
- (c) Obtain an expression for the stream function.
- (d) Plot several streamlines in the first quadrant.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Additional Engineering Textbook Solutions
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Starting Out with C++ from Control Structures to Objects (9th Edition)
Modern Database Management
Introduction To Programming Using Visual Basic (11th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Starting Out with Python (4th Edition)
- Course: Fluid Mechanicsarrow_forward2. Consider a stream function given by = (²+x²). (a) Does this flow satisfy conservation of mass? Show your work. (b) Plot the streamlines for this flow. Let K= 2. Be sure to indicate the direction of the flow. (c) Is this flow irrotational? If so, find the velocity potential for this flow. If not, show that a velocity potential does not exist. (d) Describe the flow represented by this stream function.arrow_forwardIn a stream of glycerine in motion, at a certain point the velocity gradient is 0.25 meter per sec per meter. The mass density of fluid is 1268.4 kg per cubic meter and kinematic viscosity is 6.30 x 10^-4 square meter per second. Calculate the shear stress in Pascal at the point.arrow_forward
- 6)arrow_forwardvelocity field is given by: A two-dimensional V = (x - 2y) i- (2x + y)Ĵj a. Show that the flow is incompressible and irrotational. b. Derive the expression for the velocity potential, (x,y). c. Derive the expression for the stream function, 4(x,y).arrow_forwardA fluid has a velocity field defined by u = x + 2y and v = 4 -y. In the domain where x and y vary from -10 to 10, where is there a stagnation point? Units for u and v are in meters/second, and x and y are in meters. Ox = 2 m. y = 1 m x = 2 m, y = 0 No stagnation point exists x = -8 m, y = 4 m Ox = 1 m, y = -1 m QUESTION 6 A one-dimensional flow through a nozzle has a velocity field of u = 3x + 2. What is the acceleration of a fluid particle through the nozzle? Assume u, x and the acceleration are all in consistent units. O 3 du/dt 9x + 6 1.5 x2 + 2x O Oarrow_forward
- Problem (5.14): If u = ax and v = ay and w = -2az are the velocity components for a fluid flow in a particular case, check whether they satisfy the continuity equation. If they do, is the flow rotational or irrotational? Also obtain equation of streamline passing through the point (2, 2, 4) [Ans. Yes, irrotational x y, xz/2 = 41arrow_forward2- Consider the flow in rectangular coordinates given by v=i(X3Y)+j(2yx2z). Based on the continuity equation, verify that the fluid is compressible.arrow_forward1. A Cartesian velocity field is defined by V = 2xi + 5yz2j − t3k. Find the divergence of the velocity field. Why is this an important quantity in fluid mechanics? 2. Is the flow field V = xi and ρ = x physically realizable? 3. For the flow field given in Cartesian coordinates by u = y2 , v = 2x, w = yt: (a) Is the flow one-, two-, or three-dimensional? (b) What is the x-component of the acceleration following a fluid particle? (c) What is the angle the streamline makes in the x-y plane at the point y = x = 1?arrow_forward
- 1. Find the stream function for a parallel flow of uniform velocity V0 making an angle α with the x-axis. 2. A certain flow field is described by the stream function ψ = xy. (a) Sketch the flow field. (b) Find the x and y velocity components at [0, 0], [1, 1], [∞, 0], and [4, 1]. (c) Find the volume flow rate per unit width flowing between the streamlines passing through points [0, 0] and [1, 1], and points [1, 2] and [5, 3].arrow_forwardSolve correctly please.arrow_forwardA two dimensional, steady, incompressible and potential flow field of water (ρ=1000 kg/m3) is given with velocity components u and v. If the velocity component, u is given as u=2xy m/s with the magnitude of maximum pressure in the field as 52108 Pa. a) At x=+1 m and y=+2 m point, what is the magnitude of the velocity component v (in m/s)? (Please use 2 decimal digits in your answer) b) At x=+1 m and y=+2 m point, what is the magnitude of dynamic pressure (in Pa)? (Please do not use any decimal digit in your answer) c) At x=+1 m and y=+2 m point, what is the magnitude of static pressure (in Pa)? (Please do not use any decimal digit in your answer)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY