Concept explainers
A parabolic velocity profile was used to model flow in a laminar incompressible boundary layer in Problem 5.11. Derive the stream function for this flow field. Locate streamlines at one-quarter and one-half the total volume flow rate in the boundary layer.
5.11 A useful approximation for the .x component of velocity in an incompressible laminar boundary layer is a parabolic variation from u = 0 at the surface (y = 0) to the freestream velocity, U, at the edge of the boundary layer (y = δ). The equation for the profile is u/U = 2(y/δ) − (y/δ)2, where δ = cx1/2 and c is a constant. Show that the simplest expression for the y component of velocity is
Plot υ/U versus y/δ to find the location of the maximum value of the ratio υ/U. Evaluate the ratio where δ = 5 mm and x = 0.5 m.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
- A thin wing with a parabolic chord distribution is flying at speed U∞ and zero angle of attack, asshown below. The fluid has density ρ and viscosity μ. Assume that the flow starts laminar at theleading edge but then transitions to tubulent at xcrit = 0.25a. a) Sketch the regions of laminar and turbulent flow over the wing. Calculate and label relevantdistances.b) Determine the drag force, D, and the drag coefficient, CD ≡ D/((1/2) ρU2∞S), where S is theplanform area of the wing. Express your drag coefficient answer in terms of the Reynoldsnumber based on a, Rea ≡ (U∞a)/nu.arrow_forwardConsider the flow field V = (ay+dx)i + (bx-dy)j + ck, where a(t), b(t), c(t), and d(t) are time dependent coefficients. Prove the density is constant following a fluid particle, then find the pressure gradient vector gradP, Γ for a circular contour of radius R in the x-y plane (centered on the origin) using a contour integral, and Γ by evaluating the Stokes theorem surface integral on the hemisphere of radius R above the x-y plane bounded by the contour.arrow_forwardProblem 3. Numerical results for the Blasius solution ✓ for laminar boundary layer flow can be obtained using a Matlab program on my ME 347 Canvas page. (a) Derive the equation for the dimensionless y-component of velocity, v/U, as a function of the similarity parameter (or dimensionless location), n = y√√U/(vx), the dimensionless stream function, f(n) = 4/√Uv x, and the Reynolds number, Re = Ux/v. (b) From the Blasius solution results, calculate the Reynolds number that corresponds to a boundary layer thickness of 8 = 5.0 mm at x = 0.50 m. (c) Plot v/U (on the x-axis) versus y/d = n/5.0 by editing the Matlab code above to include the needed calculations (a tutorial that describes the code above and indicates how to edit the code is available here). Add to your plot the polynomial profile from Homework 2, Problem 1 which is an approximate fit to the Blasius solution. NOTE: Be careful to differentiate between lowercase for the y-component of velocity and the Greek letter v = μ/p (called…arrow_forward
- 2. Consider the boundary-layer momentum equation for steady incompressible flow in two dimen- sions: ди dpe ду du du + po ay dx Assume the viscosity, u, to be constant. What does this equation simplifies to at a stationary solid surface? Based on this result, is a boundary layer more likely to separate in a favourable gradient (pressure decreasing) or an adverse pressure gradient? Sketch the velocity profile of a boundary layer that is attached and one that is separated. pressurearrow_forwardQuestion 1: Consider fully developed two-dimensional Poiseuille flow: flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dx driving the flow as illustrated in the figure (dP/dx is constant and negative). The flow is steady, incompressible, and two-dimensional in the xy-plane. The velocity components are given by 1 dP u = -(y² - hy); v = 0 2μ αχ h where μ is the fluid's viscosity. Is this flow rotational or irrotational? u(y) a. If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise? b. calculate the linear strain rates in the x- and y-directions, and c. calculate the shear strain rate Exy. d. Combine your results to form the two-dimensional strain rate tensor εij in the xy-plane,arrow_forwardFrom the laminar boundary layer the velocity distributions given below, find the momentum thickness θ, boundary layer thickness δ, wall shear stress τw, skin friction coefficient Cf , and displacement thickness δ*1. A linear profile, u(x, y) = a + by 2. von K ́arm ́an’s second-order, parabolic profile,u(x, y) = a + by + cy2 3. A third-order, cubic function,u(x, y) = a + by + cy2+ dy3 4. Pohlhausen’s fourth-order, quartic profile,u(x, y) = a + by + cy2+ dy3+ ey4 5. A sinusoidal profile,u = U sin (π/2*y/δ)arrow_forward
- An incompressible viscous flow is contained between two parallel plates separated from each other by distance b. The flow is caused by the movement of the upper plate which has a velocity U, while the bottom plate is fixed. If U = 9.5 m/s and b = 3.2 cm, and there is no pressure gradient in the flow direction. a) Start with Navier-Stokes equations and determine the velocity at the point x = 7 cm and y= 0.56 cm. b) Calculate the magnitude of the vorticity at the same point. c) Calculate the rate of angular deformation at the same point. Work to 4 significant digits. Enter all values using base units or their combinations, i.e. m, m/s, Pa, N. Do not use multiples as e.g. mm, kPa. You can use values with exponents, such as 0.12e3.arrow_forwardA viscous incompressible liquid of density p and of dynamic viscosity n is carried upwards against gravity with the aid of moving side walls. This laminar flow is steady and fully developed in z-direction and there is no applied pressure gradient. The coordinate is fixed in the midway between the walls as shown below. 2d g=-gk liquid P, n x=-d x=d I. The velocity profile in z-direction is pg w(x) = (x2 – d) + U. 2n II. To be able to carry a net amount of liquid upwards, the wall velocities need to be greater than pgd²/(2n). III. If one of the walls stops, increasing the speed of the other wall to 3/2U would carry the same amount of liquid upwards. Which of the above statements are true?arrow_forwardFluid dynamicsarrow_forward
- Converging duct flow is modeled by the steady, two- dimensional velocity field V = (u, v) = (U₁ + bx) i-by. For the case in which Ug = 3.56 ft/s and b = 7.66 s¯¹, plot several streamlines from x = 0 ft to 5 ft and y=-2 ft to 2 ft. Be sure to show the direction of the streamlines. (Please upload you response/solution using the controls provided below.)arrow_forwarda) Start with Navier-Stokes equations and determine the velocity at the point x = 8.5 cm and y= 0.5 cm. Calculate velocity b) Calculate the magnitude of the vorticity at the same point. c) Calculate the rate of angular deformation at the same point.arrow_forwardNeed Solution through 15minarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY