Concept explainers
Consider again the viscometric flow of Example 5.7. Evaluate the average rate of rotation of a pair of perpendicular line segments oriented at ±45° from the x axis. Show that this is the same as in the example.
Example 5.7 ROTATION IN VISCOMETRIC FLOW
A viscometric flow in the narrow gap between large parallel plates is shown. The velocity field in the narrow gap is given by
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
- A viscous incompressible liquid of density p and of dynamic viscosity n is carried upwards against gravity with the aid of moving side walls. This laminar flow is steady and fully developed in z-direction and there is no applied pressure gradient. The coordinate is fixed in the midway between the walls as shown below. 2d g=-gk liquid P, n x=-d x=d I. The velocity profile in z-direction is pg w(x) = (x2 – d) + U. 2n II. To be able to carry a net amount of liquid upwards, the wall velocities need to be greater than pgd²/(2n). III. If one of the walls stops, increasing the speed of the other wall to 3/2U would carry the same amount of liquid upwards. Which of the above statements are true?arrow_forwardConsider the flow field V = (ay+dx)i + (bx-dy)j + ck, where a(t), b(t), c(t), and d(t) are time dependent coefficients. Prove the density is constant following a fluid particle, then find the pressure gradient vector gradP, Γ for a circular contour of radius R in the x-y plane (centered on the origin) using a contour integral, and Γ by evaluating the Stokes theorem surface integral on the hemisphere of radius R above the x-y plane bounded by the contour.arrow_forwardThe velocity components for a three dimensional incornpressible flow is given by : u=x° -y-z'x, v=y' -z 3 w = - 3x'z - 3y'z + Check whether the flow satisfies continuity ?arrow_forward
- A fluid has a velocity field defined by u = x + 2y and v = 4 -y. In the domain where x and y vary from -10 to 10, where is there a stagnation point? Units for u and v are in meters/second, and x and y are in meters. Ox = 2 m. y = 1 m x = 2 m, y = 0 No stagnation point exists x = -8 m, y = 4 m Ox = 1 m, y = -1 m QUESTION 6 A one-dimensional flow through a nozzle has a velocity field of u = 3x + 2. What is the acceleration of a fluid particle through the nozzle? Assume u, x and the acceleration are all in consistent units. O 3 du/dt 9x + 6 1.5 x2 + 2x O Oarrow_forwardProblem (5.14): If u = ax and v = ay and w = -2az are the velocity components for a fluid flow in a particular case, check whether they satisfy the continuity equation. If they do, is the flow rotational or irrotational? Also obtain equation of streamline passing through the point (2, 2, 4) [Ans. Yes, irrotational x y, xz/2 = 41arrow_forwardAnswer question 3 in the attached image pleasearrow_forward
- The components of a two-dimensional velocity field are u = 4 + y³ and v = 16. The equation for a streamline can be written as y++ Ay + Bx + C = 0. Determine the values of the coefficients for the streamline passing through (3, 1). A = i B = i C= iarrow_forwardConsider a velocity field where the x and y components of velocity aregiven by u = cx and v = −cy, where c is a constant. Assuming the velocity field given is pertains to an incompressible flow, calculate the stream function and velocity potential.Using your results, show that lines of constant φ are perpendicular to linesof constant ψ.arrow_forwardConsider the velocity field represented by V = K (yĩ + xk) Rotation about z-axis isarrow_forward
- The velocity field for a fluid flow is given by following expression: =(0.2x² + 2y+2.5)î +(0.5x+2y² – 6) ĵ+(0.15x² + 3y° + z)k The strain tensor at (2,1,–1) will be: 0.8 1.25 0.30 a) | -1.25 -4 0.30 -1 (0.8 1.25 0.70 b) | 1.25 2 0.30 -2 1 0.8 1.25 0.30) c) | 1.25 4 -2 0.30 -2 1 0.8 1.25 0.30 d) | 1.25 8. -2 0.8 2 1arrow_forward6)arrow_forwardAn equation for the velocity for a 2D planar converging nozzle is Uy u =U1+ w=0 L Where U is the speed of the flow entering into the nozzle, and L is the length. Determine if these satisfy the continuity equation. Write the Navier-Stokes equations in x and y directions, simplify them appropriately, and integrate to determine the pressure distribution P(x.y) in the nozzle. Assume that at x = 0, y = 0, the pressure is a known value, P.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY