Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 50P
Determine the velocity potential for
- (a) a flow field characterized by the stream function ψ = 3x2y − y3.
- (b) a flow field characterized by the stream function ψ = xy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) A two-dimensional flow field is given byu = 5x 2 − 5y 2v = −10xy(i) Find the streamfunction ψ and velocity potential φ.(ii) Find the equation for the streamline and potential line which passesthrough the point (1, 1).
velocity field is given by:
A two-dimensional
V = (x - 2y) i- (2x + y)Ĵj
a. Show that the flow is incompressible and irrotational.
b. Derive the expression for the velocity potential, (x,y).
c. Derive the expression for the stream function, 4(x,y).
The velocity components in the x and y
directions are given by
3
u = Axy3 - x2y, v = xy2 --
The value of a for a possible flow field
involving an incompressible fluid is
Chapter 5 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 5 - Which of the following sets of equations represent...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - In an incompressible three-dimensional flow field,...Ch. 5 - In a two-dimensional incompressible flow field,...Ch. 5 - The three components of velocity in a velocity...Ch. 5 - The x component of velocity in a steady,...Ch. 5 - The y component of velocity in a steady...Ch. 5 - The velocity components for an incompressible...Ch. 5 - The radial component of velocity in an...Ch. 5 - A crude approximation for the x component of...
Ch. 5 - A useful approximation for the x component of...Ch. 5 - A useful approximation for the x component of...Ch. 5 - For a flow in the xy plane, the x component of...Ch. 5 - Consider a water stream from a jet of an...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - For an incompressible flow in the r plane, the r...Ch. 5 - A viscous liquid is sheared between two parallel...Ch. 5 - A velocity field in cylindrical coordinates is...Ch. 5 - Determine the family of stream functions that...Ch. 5 - The stream function for a certain incompressible...Ch. 5 - Determine the stream functions for the following...Ch. 5 - Determine the stream function for the steady...Ch. 5 - Prob. 23PCh. 5 - A parabolic velocity profile was used to model...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - Prob. 27PCh. 5 - A flow field is characterized by the stream...Ch. 5 - In a parallel one-dimensional flow in the positive...Ch. 5 - Consider the flow field given by V=xy2i13y3j+xyk....Ch. 5 - Prob. 31PCh. 5 - The velocity field within a laminar boundary layer...Ch. 5 - A velocity field is given by V=10ti10t3j. Show...Ch. 5 - The y component of velocity in a two-dimensional,...Ch. 5 - A 4 m diameter tank is filled with water and then...Ch. 5 - An incompressible liquid with negligible viscosity...Ch. 5 - Sketch the following flow fields and derive...Ch. 5 - Consider the low-speed flow of air between...Ch. 5 - As part of a pollution study, a model...Ch. 5 - As an aircraft flies through a cold front, an...Ch. 5 - Wave flow of an incompressible fluid into a solid...Ch. 5 - A steady, two-dimensional velocity field is given...Ch. 5 - A velocity field is represented by the expression...Ch. 5 - A parabolic approximate velocity profile was used...Ch. 5 - A cubic approximate velocity profile was used in...Ch. 5 - The velocity field for steady inviscid flow from...Ch. 5 - Consider the incompressible flow of a fluid...Ch. 5 - Consider the one-dimensional, incompressible flow...Ch. 5 - Expand (V)V in cylindrical coordinates by direct...Ch. 5 - Determine the velocity potential for (a) a flow...Ch. 5 - Determine whether the following flow fields are...Ch. 5 - The velocity profile for steady flow between...Ch. 5 - Consider the velocity field for flow in a...Ch. 5 - Consider the two-dimensional flow field in which u...Ch. 5 - Consider a flow field represented by the stream...Ch. 5 - Fluid passes through the set of thin, closely...Ch. 5 - A two-dimensional flow field is characterized as u...Ch. 5 - A flow field is represented by the stream function...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the velocity field given by V=Ax2i+Bxyj,...Ch. 5 - Consider again the viscometric flow of Example...Ch. 5 - The velocity field near the core of a tornado can...Ch. 5 - A velocity field is given by V=2i4xjm/s. Determine...Ch. 5 - Consider the pressure-driven flow between...Ch. 5 - Consider a steady, laminar, fully developed,...Ch. 5 - Assume the liquid film in Example 5.9 is not...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - A linear velocity profile was used to model flow...Ch. 5 - A cylinder of radius ri rotates at a speed ...Ch. 5 - The velocity profile for fully developed laminar...Ch. 5 - Assume the liquid film in Example 5.9 is...Ch. 5 - The common thermal polymerase chain reaction (PCR)...Ch. 5 - A tank contains water (20C) at an initial depth y0...Ch. 5 - For a small spherical particle of styrofoam...Ch. 5 - Use Excel to generate the progression to an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two velocity components of a steady, incompressible flow field are known: u = 2ax + bxy + cy2 and ? = axz − byz2, where a, b, and c are constants. Velocity component w is missing. Generate an expression for w as a function of x, y, and z.arrow_forwardThe stream function of a flow field is y = Ax3 – Bxy², where A = 1 m1s1 and B = 3 m-1s1. (a) Derive the velocity vector (b) Prove that the flow is irrotational (c) Derive the velocity potentialarrow_forwardThe stream function o in a two-dimensional flow field is given as 9 = 4x – 3y + 7xy (a) Prove that this flow field is irrotational and that it satisfies the continuity equation. Find the potential flow function P(x, y) for this flow field with boundary condition 0 = 0 at x = 2, y = 1. (b)arrow_forward
- 1. For a flow in the xy-plane, the y-component of velocity is given by v = y2 −2x+ 2y. Find a possible x-component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? 2. The x-component of velocity in a steady, incompressible flow field in the xy-plane is u = A/x. Find the simplest y-component of velocity for this flow field.arrow_forwardA two-dimensional flow field is given by the equations: u = ax + by V = Cx + dy Give one possible combination of constants a, b, c and d (none of which are zero) for which this describes the flow of an incompressible fluid. a = b = C = d=arrow_forwardIn a certain two‐dimensional flow field, the velocity is constant with components u = –4 ft/s and v = –2 ft/s.Determine the corresponding stream function and velocity potential for this flow field. Sketch theequipotential line φ = 0 which passes through the origin of the coordinate system. Could you answer and explain every step pleasearrow_forward
- The components of a two-dimensional velocity field are u = 4 + y³ and v = 16. The equation for a streamline can be written as y++ Ay + Bx + C = 0. Determine the values of the coefficients for the streamline passing through (3, 1). A = i B = i C= iarrow_forwardConsider a velocity field where the x and y components of velocity aregiven by u = cx and v = −cy, where c is a constant. Assuming the velocity field given is pertains to an incompressible flow, calculate the stream function and velocity potential.Using your results, show that lines of constant φ are perpendicular to linesof constant ψ.arrow_forwardPlease answer with detailarrow_forward
- Gggarrow_forwardQ3 The stream function for a given 2D flow fields is V = 5a²y – (s/3)y Determine the corresponding velocity potential.arrow_forward3. The velocity components in a two dimensional flow field for an incompressible fluid are expressed as u = 2y -. v = xy? – 2y - 3' (a) Show that these functions represents a possible case of an irrotational flow, (b) obtain an expression for the stream function y and (c) obtain an expression for the velocity potential o.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license