A linear velocity profile was used to model flow in a laminar incompressible boundary layer in Problem 5.10. Express the rotation of a fluid particle. Locate the maximum rate of rotation. Express the rate of angular deformation for a fluid particle. Locate the maximum rate of angular deformation. Express the rates of linear deformation for a fluid particle. Locate the maximum rates of linear deformation. Express the shear force per unit volume in the x direction. Locate the maximum shear force per unit volume; interpret this result.
5.10 A crude approximation for the x component of velocity in an incompressible laminar boundary layer is a linear variation from u = 0 at the surface (y = 0) to the freestream velocity, U, at the boundary-layer edge (y = δ). The equation for the profile is u = Uy/δ, where δ = cx1/2 and c is a constant. Show that the simplest expression for the y component of velocity is υ = uy/4x. Evaluate the maximum value of the ratio υ/U, at a location where x = 0:5 m and δ = 5 mm.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Additional Engineering Textbook Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Thermodynamics: An Engineering Approach
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Modern Database Management
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- 2. Consider a flow with the velocity profile given by the equation below. The fluid surface is located at y = 0. Here, U∞ is called the freestream velocity and 8 is called the boundary layer thickness. Calculate the boundary layer thickness at a point where the shear stress is 36 mPa if the freestream velocity is 40 m/s and the fluid's dynamic viscosity 1.81.105 Pa.s. U.. ( 2 (²) - (²) ²) u(y) = U∞oarrow_forwardLegible answersarrow_forwardAs4arrow_forward
- A wind tunnel has a cross-section of 1.0m at its inlet by 1.0m and length 10m. Wind at uniform velocity 15m/s enters the tunnel at 20°C. Assume, velocity distribution in turbulent 1/5 y boundary layer to follow the law U (Kinematic viscosity= 1.53x10°m² /s) Assuming the boundary layer to be turbulent from the beginning, then the value of 8(represents in law) is calculated asarrow_forward1. Any equation that comes out of the differential approach is valid at every point in the flow field. On the other hand, the integral approach gives us a point by point value and not an average value. True or False 2. During the analysis of fluid flow, we are more often interested in obtaining the average velocity, and one of the common ways of obtaining the average velocity is to take an average across the flow cross-section. This is called area-average velocity, average along the direction parallel to the principal direction of flow. True or False 3. A crude oil with a density of 875 kilogram per cubic meter is pumped and flowing at 1.5 meter per second through a pipeline 1 meter in diameter. The maximum viscosity of the oil to exhibit a laminar flow behavior is 625 centipoise. True or Falsearrow_forwardA jet engine on a test stand directs a stream of hot exhaust gasses against a vemcal wall. All of the exhaust gas leaving the wall after impact is in the y-z plane (ie no "x" direction velocity). The mass rate is 200 kg/s and the velocity is 400 m/s. (Note that the density and viscosity are not relevant) What is the force on the wall (include direction)?arrow_forward
- a. Derive an equation for the material acceleration vector.b. Obtain the vorticity vector for the velocity field.c. Is the flow rotational or irrotational? Show through your derivation.d. Is the flow incompressible or compressible? Show through your derivation.arrow_forwardAn incompressible fluid flows in a linear porous medium with the following properties: Lenth = 3000 ft k = 100 md p1 = 2000 psig p2 = 1980 psig height = 25 ft porosity = 20% width = 300 ft viscosity = 2 cP Assume the dimension is slanted, i.e., a dip angle of 5 degrees (downward from p1 location to p2 location), what is the apparent fluid velocity under this new boundary condition?arrow_forward6.7 A one-dimensional flow is described by the velocity field u = ay + by² v = w = 0 where a and b are constants. Is the flow irrotational? For what com- bination of constants (if any) will the rate of angular deformation be zero?arrow_forward
- A piston having a diameter of 9in. and a length of 995in. slides downward with a velocity V through a vertical pipe. The downward motion is resisted by an oil film between the piston and the pipe wall. The film thickness is 90000 in., and the cylinder weighs 7836lb. Estimate V if the oil kinematic viscosity is 7800 ft'/s and its density 432 slugs/ft.Assume the velocity distribution in the gap is linear.arrow_forwardFluid dynamicsarrow_forwardIn chapter 12, we found the velocity profile for flow around a sphere using the creeping flow approximation. For the flow, derive the velocity profile for V, and Ve. Also, find the pressure distribution P. Finally, find the drag force acting on the sphere. (Hint: use the following integration ranges (1) 0<0<â and (2) 0<ô<2à). You can use all the assumptions that we made for this flow in the class.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY