Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 22P
Determine the stream function for the steady incompressible flow between parallel plates. The velocity profile is parabolic and given by u = uc + ay2, where uc is the centerline velocity and y is the distance measured from the centerline. The plate spacing is 2b and the velocity is zero at each plate. Explain why the stream function is not a function of x.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The stream function for a two-dimensional, nonviscous,
incompressible flow field is given by the expression
V = -2(x – y)
where the stream function has the units of ft²/s with x and y in
feet. (a) Calculate velocity components u and v.
(b) Verify that the velocity field is irrotational.
(c) Generate an expression for the Potential function
in this region.
In a 2D dimension incompressible flow , if the fluid velocity components are given by u = x-4y , v = -4x then stream function y is given by
Does the velocity potential exist for two dimensional incompressible flow prescribed by
u = x-4y; v = -(y+4x)?
If so determine its form (@) as well as that of stream function (u).
Chapter 5 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 5 - Which of the following sets of equations represent...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - In an incompressible three-dimensional flow field,...Ch. 5 - In a two-dimensional incompressible flow field,...Ch. 5 - The three components of velocity in a velocity...Ch. 5 - The x component of velocity in a steady,...Ch. 5 - The y component of velocity in a steady...Ch. 5 - The velocity components for an incompressible...Ch. 5 - The radial component of velocity in an...Ch. 5 - A crude approximation for the x component of...
Ch. 5 - A useful approximation for the x component of...Ch. 5 - A useful approximation for the x component of...Ch. 5 - For a flow in the xy plane, the x component of...Ch. 5 - Consider a water stream from a jet of an...Ch. 5 - Which of the following sets of equations represent...Ch. 5 - For an incompressible flow in the r plane, the r...Ch. 5 - A viscous liquid is sheared between two parallel...Ch. 5 - A velocity field in cylindrical coordinates is...Ch. 5 - Determine the family of stream functions that...Ch. 5 - The stream function for a certain incompressible...Ch. 5 - Determine the stream functions for the following...Ch. 5 - Determine the stream function for the steady...Ch. 5 - Prob. 23PCh. 5 - A parabolic velocity profile was used to model...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - A flow field is characterized by the stream...Ch. 5 - Prob. 27PCh. 5 - A flow field is characterized by the stream...Ch. 5 - In a parallel one-dimensional flow in the positive...Ch. 5 - Consider the flow field given by V=xy2i13y3j+xyk....Ch. 5 - Prob. 31PCh. 5 - The velocity field within a laminar boundary layer...Ch. 5 - A velocity field is given by V=10ti10t3j. Show...Ch. 5 - The y component of velocity in a two-dimensional,...Ch. 5 - A 4 m diameter tank is filled with water and then...Ch. 5 - An incompressible liquid with negligible viscosity...Ch. 5 - Sketch the following flow fields and derive...Ch. 5 - Consider the low-speed flow of air between...Ch. 5 - As part of a pollution study, a model...Ch. 5 - As an aircraft flies through a cold front, an...Ch. 5 - Wave flow of an incompressible fluid into a solid...Ch. 5 - A steady, two-dimensional velocity field is given...Ch. 5 - A velocity field is represented by the expression...Ch. 5 - A parabolic approximate velocity profile was used...Ch. 5 - A cubic approximate velocity profile was used in...Ch. 5 - The velocity field for steady inviscid flow from...Ch. 5 - Consider the incompressible flow of a fluid...Ch. 5 - Consider the one-dimensional, incompressible flow...Ch. 5 - Expand (V)V in cylindrical coordinates by direct...Ch. 5 - Determine the velocity potential for (a) a flow...Ch. 5 - Determine whether the following flow fields are...Ch. 5 - The velocity profile for steady flow between...Ch. 5 - Consider the velocity field for flow in a...Ch. 5 - Consider the two-dimensional flow field in which u...Ch. 5 - Consider a flow field represented by the stream...Ch. 5 - Fluid passes through the set of thin, closely...Ch. 5 - A two-dimensional flow field is characterized as u...Ch. 5 - A flow field is represented by the stream function...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the flow field represented by the stream...Ch. 5 - Consider the velocity field given by V=Ax2i+Bxyj,...Ch. 5 - Consider again the viscometric flow of Example...Ch. 5 - The velocity field near the core of a tornado can...Ch. 5 - A velocity field is given by V=2i4xjm/s. Determine...Ch. 5 - Consider the pressure-driven flow between...Ch. 5 - Consider a steady, laminar, fully developed,...Ch. 5 - Assume the liquid film in Example 5.9 is not...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - Consider a steady, laminar, fully developed...Ch. 5 - A linear velocity profile was used to model flow...Ch. 5 - A cylinder of radius ri rotates at a speed ...Ch. 5 - The velocity profile for fully developed laminar...Ch. 5 - Assume the liquid film in Example 5.9 is...Ch. 5 - The common thermal polymerase chain reaction (PCR)...Ch. 5 - A tank contains water (20C) at an initial depth y0...Ch. 5 - For a small spherical particle of styrofoam...Ch. 5 - Use Excel to generate the progression to an...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The while loop is a _______ type of loop. a. pretest b. no-test c. prequalified d. post-iterative
Starting Out with Python (4th Edition)
When a GroupBox control is deleted, what happens to the controls that are inside?
Starting Out With Visual Basic (8th Edition)
102* The sum of seven interior angles ofa closed-polygon traverse each read to the nearest
3 ” is
$99 a 59 '39...
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Write an SQL statement to display the breed, type, and DOB of all pets having the type Dog.
Database Concepts (8th Edition)
A loading causes the block to deform into the dashed shape. Explain how to determine the strains AB AC, BC, (A)...
Mechanics of Materials (10th Edition)
The pipe assembly is subjected to the 80-N force. Determine the moment of this force about point B.
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a steady, two-dimensional flow field in the xy-plane whose x-component of velocity is given by u = a + b(x − c)2 where a, b, and c are constants with appropriate dimensions. Of what form does the y-component of velocity need to be in order for the flow field to be incompressible? In other words, generate an expression for ? as a function of x, y, and the constants of the given equation such that the flow is incompressiblearrow_forwardWhat is the flow pattern? Plot the velocity field, potential field, and streamlines. Please explain it in detail.arrow_forwardplease answer quicklyarrow_forward
- The velocity field of a flow is given by V axyi + by2j where a = 1 m-1s-1 and b = - 0.5 m-1s-1. Thecoordinates are in meters. Determine whether the flow field is three-, two-, or one-dimensional. Findthe equations of the streamlines and sketch several streamlines in the upper half plane (arrow_forwardThe u velocity component of a steady, two-dimensional, incompressible flow field is u = 3ax2 − 2bxy, where a and b are constants. Velocity component ?isunknown.Generatean expression for ? as a function of x and y.arrow_forward(а) A two-dimensional flow field in the xy plane is given by u = v = x2+y2 x2+y2 where u and v are the velocity components in the x and y directions, respectively and K is a positive constant. Determine the equations for the streamlines. Plot the velocity field, and streamlines on the same figure (You may hand plot or computer plot). Show any FIVE streamlines and label the streamlines in a positive x-y region (you may choose a suitable range). Discuss the important features of the plots.arrow_forward
- In a certain two‐dimensional flow field, the velocity is constant with components u = –4 ft/s and v = –2 ft/s.Determine the corresponding stream function and velocity potential for this flow field. Sketch theequipotential line φ = 0 which passes through the origin of the coordinate system. Could you answer and explain every step pleasearrow_forwardconsider the 2 dimensional velocity field V= -Ayi +Axj where in this flow field does the speed equal to A? Where does the speed equal to 2A?arrow_forwardThe equation of streamline passing through (1, 1) for the velocity function V = -y?i – 6xj isarrow_forward
- A 2-D flow field has velocity components along X-axis and y-axis given by u = x't and v = -2 xyt respectively, here, t is time. The equation of streamline for the given velocity field is : (а) ху — сonstant (с) ху' — сonstant (b) x´y = constant (d) x + y constantarrow_forwardConsider a two-dimensional flow which varies in time and is defined by the velocity field, u = 1 and v = 2yt. Compute the convective derivative of each velocity component: Du/Dt and Dv/Dt.arrow_forwardAn equation for the velocity for a 2D planar converging nozzle is Uy u =U1+ w=0 L Where U is the speed of the flow entering into the nozzle, and L is the length. Determine if these satisfy the continuity equation. Write the Navier-Stokes equations in x and y directions, simplify them appropriately, and integrate to determine the pressure distribution P(x.y) in the nozzle. Assume that at x = 0, y = 0, the pressure is a known value, P.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license