Concept explainers
What is the effect of the following on the volume of 1 mol of an ideal gas?
(a) The pressure is reduced by a factor of 4 (at constant T).
(b) The pressure changes from 760 torr to 202 kPa, and the temperature changes from 37°C to 155 K.
(c) The temperature changes from 305 K to 32°C, and the presure changes from 2 atm to 101 kPa.
(a)
Interpretation:
The effect on the volume of 1 mole of an ideal gas should be determined when the pressure is decreased by factor of four at constant temperature.
Concept Introduction:
Boyle's Law gives the relationship between Pressure (P) and Volume (V).
According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.
PV = constant
The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.
Charles’s Law gives the relationship between Volume (V) and Temperature (T)
According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.
If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same
Charles’s Law can be written as:
Where, T1 and V1 are the initial temperature and volume.
T2 and V2 are the final temperature and volume.
Avogadro's Law:
At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.
According to Avogadro's Law, at STP, 1 mole of a gas consist of
The mathematical expression is given as:
Amonton's Law:
The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.
The mathematical expression is given as:
Or,
Answer to Problem 5.15P
At constant temperature, the volume of one mole of a gas is four times the initial volume when the pressure of a gas is reduced by factor four.
Explanation of Solution
Ideal gas law gives the relation between pressure, volume, number of moles and temperature.
The ideal gas law is:
Where,
P = Pressure
V = Volume
n = Number of moles
R = Universal gas constant (
T = Temperature
The new ideal expression is shown below, when the pressure is decreased by factor 4 at constant temperature.
Now, the new volume is calculated as:
Thus, new volume is:
Hence, at constant temperature, the volume of one mole of a gas is four times the initial volume when the pressure of a gas is reduced by factor four.
(b)
Interpretation:
The effect on the volume of 1 mole of an ideal gas should be determined when the pressure changes from 760 torr to 202 kPa and the temperature changes from
Concept Introduction:
Boyle's Law gives the relationship between Pressure (P) and Volume (V).
According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.
PV = constant
The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.
Charles’s Law gives the relationship between Volume (V) and Temperature (T)
According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.
If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same
Charles’s Law can be written as:
Where, T1 and V1 are the initial temperature and volume.
T2 and V2 are the final temperature and volume.
Avogadro's Law:
At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.
According to Avogadro's Law, at STP, 1 mole of a gas consist of
The mathematical expression is given as:
Amonton's Law:
The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.
The mathematical expression is given as:
Or,
Answer to Problem 5.15P
The final volume of a gas is the ¼ times of the initial volume of a gas.
Explanation of Solution
Ideal gas law gives the relation between pressure, volume, number of moles and temperature.
The ideal gas law is:
Where,
P = Pressure
V = Volume
n = Number of moles
R = Universal gas constant (
T = Temperature
The ideal gas law for two given conditions is:
Where,
Convert the value of pressure in torr to kPa.
Since, 1 kPa = 7.50 torr
Thus, Pressure in kPa =
Convert the value of temperature in degree Celsius in Kelvin.
Temperature in K =
Put the values,
Thus, the final volume of a gas is¼ times of the initial volume of a gas.
(c)
Interpretation:
The effect on the volume of 1 mole of an ideal gas should be determined when Temperature changes from 305 K to
Concept Introduction:
Boyle's Law gives the relationship between Pressure (P) and Volume (V).
According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.
PV = constant
The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.
Charles’s Law gives the relationship between Volume (V) and Temperature (T)
According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.
If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same
Charles’s Law can be written as:
Where, T1 and V1 are the initial temperature and volume.
T2 and V2 are the final temperature and volume.
Avogadro's Law:
At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.
According to Avogadro's Law, at STP, 1 mole of a gas consist of
The mathematical expression is given as:
Amonton's Law:
The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.
The mathematical expression is given as:
Or,
Answer to Problem 5.15P
The final volume of a gas is 2 times of the initial volume of a gas.
Explanation of Solution
Ideal gas law gives the relation between pressure, volume, number of moles and temperature.
The ideal gas law is:
Where,
P = Pressure
V = Volume
n = Number of moles
R = Universal gas constant (
T = Temperature
The ideal gas law for two given conditions is:
Where,
Convert the value of pressure in kPa to atm.
Since, 1 kPa = 0.00987 atm
Thus, Pressure in atm =
Convert the value of temperature in degree Celsius in Kelvin.
Temperature in K =
Put the values,
Thus, the final volume of a gas is 2 times of the initial volume of a gas.
Want to see more full solutions like this?
Chapter 5 Solutions
Principles of General Chemistry
- Can you please explain why the correct answer for this question is letter B? I chose letter A because I thought that a kinetic product was a 1,2-addition. Please give a detailed explanation.arrow_forwardCan you please explain why the answer is structures 2 and 3? Please include a detailed explanation and show how the synthesis can be done with those two structures.arrow_forwardCan you please explain why the correct answer to this question is option 2? I am having trouble understanding how and why. Please provide a detailed explanation and a drawing of how the diene and dienophile would create the product in the question.arrow_forward
- Can you please explain why the correct answer is molecules 2 and 4? Base your explanation off of the rules for aromaticity and well as the principles of the Huckel rule of aromaticity. Please give a detailed explanation of what Hucekl's rule is.arrow_forwardCan you please explain why the answer is B and not A? I chose A because I thought the thermodynamic product was a 1,4-addition. Please give a detailed explanation to this problem and include a drawing of how the reaction works.arrow_forwardLabel the diagram according to the components and processes of an alkaline batteryarrow_forward
- Can you please explain why the answer to the question is option 4? Please include the aromaticity rules as well as Huckel's rule. Please label molecules 1, 2, 3, and 5 with their respective labels of aromatic or nonaromatic and why.arrow_forwardDon't used hand raitingarrow_forwardCan you please explain why the correct answer is molecules 2 and 4? Please provide a detailed explanation as well as the two molecules drawn showing what and where it is conjugated.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning