
Concept explainers
(a)
Interpretation: The increasing order of effusion rate for the mixture of disulfur difluoride, dinitrogen tetrafluoride and sulfur tetrafluoride gases placed in an effusion apparatus needs to be determined.
Concept Introduction:
Graham's Law of effusion of gases states that at same conditions, the effusion rate of two gases vary inversely with the square roots of molar masses of the gases. The mathematical expression for the Graham’s law for two gases ‘a’ and ‘b’ can be written as:
(a)

Answer to Problem 5.63P
The rate of effusion of gases must be:
Explanation of Solution
As the molar mass increases, the rate of effusion decreases. The molar mass of gases are:
- Disulfur difluoride = 102.13 g/mol
- Dinitrogen tetrafluoride =104.00 g/mol
- Sulfur tetrafluoride = 108.07 g/mol
Hence, the rate of effusion of gases must be:
(b)
Interpretation: The ratio of effusion rate of gases disulfur difluoride and dinitrogen tetrafluoride is placed in an effusion apparatus needs to be determined.
Concept Introduction:
Graham's Law of effusion of gases states that at same conditions, the effusion rate of two gases vary inversely with the square roots of molar masses of the gases. The mathematical expression for the Graham’s law for two gases ‘a’ and ‘b’ can be written as:
(b)

Answer to Problem 5.63P
Explanation of Solution
Graham's Law of effusion of gases states that at the same conditions the rate of effusion of two different gases are inversely proportional to the square roots of their molar masses. The mathematical expression for the Graham’s law for two gases ‘a’ and ‘b’ can be written as:
As the molar mass increases, the rate of effusion decreases. The molar mass of gases are:
- Disulfur difluoride = 102.13 g/mol
- Dinitrogen tetrafluoride = 104.00 g/mol
Substitute the values of molar mass to calculate the rate of effusion:
(c)
Interpretation: The molar mass of X gas that is added to gas mixture and effuses at 0.935 times at the rate of
Concept Introduction:
Graham's Law of effusion of gases states that at same conditions, the effusion rate of two gases vary inversely with the square roots of molar masses of the gases. The mathematical expression for the Graham’s law for two gases ‘a’ and ‘b’ can be written as:
(c)

Answer to Problem 5.63P
Explanation of Solution
As the molar mass increases, the rate of effusion decreases. The molar mass of gas:
- Sulfur tetrafluoride = 108.07 g/mol
Substitute the values to calculate the molar mass:
Thus, molar mass of unknown gas is 123.6 g/mol.
Want to see more full solutions like this?
Chapter 5 Solutions
Principles of General Chemistry
- What are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forwardA block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forward
- Can u help me figure out the reaction mechanisms for these, idk where to even startarrow_forwardHi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward
- 5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forward
- Draw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forwardDraw the major product of this reaction. Nitropropane reacts + pent-3-en-2-one reacts with NaOCH2CH3, CH3CHOHarrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. OC2H5 + CoHs-NH-NH,arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning




