
Concept explainers
What is the effect of the following on the volume of 1 mol of an ideal gas?
(a) The pressure is tripled (at constant T).
(b) The absolute temperature is increased by a factor of 3.0 (at constant P).
(c) Three more moles of the gas are added (at constant P and T).
(a)

Interpretation:
The effect on the volume of 1 mole of an ideal gas should be determined when the pressure is tripled at constant temperature.
Concept Introduction:
Boyle's Law gives the relationship between Pressure (P) and Volume (V).
According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.
PV = constant
The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.
Charles’s Law gives the relationship between Volume (V) and Temperature (T)
According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.
If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same
Charles’s Law can be written as:
Where, T1 and V1 are the initial temperature and volume.
T2 and V2 are the final temperature and volume.
Avogadro's Law:
At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.
According to Avogadro's Law, at STP, 1 mole of a gas consist of
The mathematical expression is given as:
Amonton's Law:
The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.
The mathematical expression is given as:
Or,
Answer to Problem 5.14P
At constant temperature, the volume of one mole of a gas is 1/3 of the initial volume when the pressure of a gas is tripled.
Explanation of Solution
Ideal gas law gives the relation between pressure, volume, number of moles and temperature.
The ideal gas law is:
Where,
P = Pressure
V = Volume
n = Number of moles
R = Universal gas constant (
T = Temperature
The new ideal expression is shown below, when the pressure is tripled.
Now, the new volume is calculated as:
Thus, new volume is:
Hence, at constant temperature, the volume of one mole of a gas is 1/3 of the initial volume when the pressure of a gas is tripled.
(b)

Interpretation:
The effect on the volume of 1 mole of an ideal gas should be determined when the absolute temperature is increased by factor of 3.0 at constant pressure.
Concept Introduction:
Boyle's Law gives the relationship between Pressure (P) and Volume (V).
According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.
PV = constant
The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.
Charles’s Law gives the relationship between Volume (V) and Temperature (T)
According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.
If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same
Charles’s Law can be written as:
Where, T1 and V1 are the initial temperature and volume.
T2 and V2 are the final temperature and volume.
Avogadro's Law:
At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.
According to Avogadro's Law, at STP, 1 mole of a gas consist of s
The mathematical expression is given as:
Amonton's Law:
The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.
The mathematical expression is given as:
Or,
Answer to Problem 5.14P
At constant pressure, the volume of one mole of a gas is triple of the initial volume when the absolute temperature of a gas is increased by factor 3.0.
Explanation of Solution
Ideal gas law gives the relation between pressure, volume, number of moles and temperature.
The ideal gas law is:
Where,
P = Pressure
V = Volume
n = Number of moles
R = Universal gas constant (
T = Temperature
The new ideal expression is shown below, when the temperature is increased by factor 3.0.
Now, the new volume is calculated as:
Thus, new volume is:
Hence, at constant pressure, the volume of one mole of a gas is triple of the initial volume when the absolute temperature of a gas is increased by factor 3.0.
(c)

Interpretation:
The effect on the volume of 1 mole of an ideal gas should be determined when three more number of moles of gas is added at constant pressure and temperature.
Concept Introduction:
Boyle's Law gives the relationship between Pressure (P) and Volume (V).
According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.
PV = constant
The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.
Charles’s Law gives the relationship between Volume (V) and Temperature (T)
According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.
If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same
Charles’s Law can be written as:
Where, T1 and V1 are the initial temperature and volume.
T2 and V2 are the final temperature and volume.
Avogadro's Law:
At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.
According to Avogadro's Law, at STP, 1 mole of a gas consist of
The mathematical expression is given as:
Amonton's Law:
The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.
The mathematical expression is given as:
Or,
Answer to Problem 5.14P
At constant pressure and temperature, the volume of one mole of a gas is increase by factor 4.0 when three more number of moles of a gas is added.
Explanation of Solution
Ideal gas law gives the relation between pressure, volume, number of moles and temperature.
The ideal gas law is:
Where,
P = Pressure
V = Volume
n = Number of moles
R = Universal gas constant (
T = Temperature
The new ideal expression is shown below, when three more number of moles of gas are added.
Now, the new volume is calculated as:
Thus, new volume is:
Hence, at constant pressure and temperature, the volume of one mole of a gas is increase by factor 4.0 when three more number of moles of a gas is added.
Want to see more full solutions like this?
Chapter 5 Solutions
Principles of General Chemistry
- Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




