Principles of General Chemistry
Principles of General Chemistry
3rd Edition
ISBN: 9780073402697
Author: SILBERBERG, Martin S.
Publisher: McGraw-Hill College
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.14P

What is the effect of the following on the volume of 1 mol of an ideal gas?

(a) The pressure is tripled (at constant T).

(b) The absolute temperature is increased by a factor of 3.0 (at constant P).

(c) Three more moles of the gas are added (at constant P and T).

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The effect on the volume of 1 mole of an ideal gas should be determined when the pressure is tripled at constant temperature.

Concept Introduction:

Boyle's Law gives the relationship between Pressure (P) and Volume (V).

According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.

PV = constant

  1V

The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.

Charles’s Law gives the relationship between Volume (V) and Temperature (T)

According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.

  VT = constant

  VαT

If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same VT as the initial volume and temperature. Then, a relationship between initial and final VT can be set as equal to each other.

Charles’s Law can be written as:

  V1T1=V2T2 (Pressure and amount of a gas remain constant)

Where, T1 and V1 are the initial temperature and volume.

T2 and V2 are the final temperature and volume.

Avogadro's Law:

At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.

According to Avogadro's Law, at STP, 1 mole of a gas consist of 6.02×1023 occupies 22.4 L volume.

The mathematical expression is given as:

  Vn=constant(pressure, temperature fixed)

Amonton's Law:

The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.

The mathematical expression is given as:

  PαT

Or,

  PT=constant (Volume, number of moles fixed)

Answer to Problem 5.14P

At constant temperature, the volume of one mole of a gas is 1/3 of the initial volume when the pressure of a gas is tripled.

Explanation of Solution

Ideal gas law gives the relation between pressure, volume, number of moles and temperature.

The ideal gas law is:

  PV= nRT

Where,

P = Pressure

V = Volume

n = Number of moles

R = Universal gas constant ( 0.0821 atmL/molK )

T = Temperature

The new ideal expression is shown below, when the pressure is tripled.

  3PV'= nRT

Now, the new volume is calculated as:

  3PV'PVnRTnRT

Thus, new volume is:

  V'13V

Hence, at constant temperature, the volume of one mole of a gas is 1/3 of the initial volume when the pressure of a gas is tripled.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The effect on the volume of 1 mole of an ideal gas should be determined when the absolute temperature is increased by factor of 3.0 at constant pressure.

Concept Introduction:

Boyle's Law gives the relationship between Pressure (P) and Volume (V).

According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.

PV = constant

  1V

The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.

Charles’s Law gives the relationship between Volume (V) and Temperature (T)

According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.

  VT = constant

  VαT

If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same VT as the initial volume and temperature. Then, a relationship between initial and final VT can be set as equal to each other.

Charles’s Law can be written as:

  V1T1=V2T2 (Pressure and amount of a gas remain constant)

Where, T1 and V1 are the initial temperature and volume.

T2 and V2 are the final temperature and volume.

Avogadro's Law:

At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.

According to Avogadro's Law, at STP, 1 mole of a gas consist of s 6.02×1023 occupies 22.4 L volume.

The mathematical expression is given as:

  Vn=constant(pressure, temperature fixed)

Amonton's Law:

The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.

The mathematical expression is given as:

  PαT

Or,

  PT=constant (Volume, number of moles fixed)

Answer to Problem 5.14P

At constant pressure, the volume of one mole of a gas is triple of the initial volume when the absolute temperature of a gas is increased by factor 3.0.

Explanation of Solution

Ideal gas law gives the relation between pressure, volume, number of moles and temperature.

The ideal gas law is:

  PV= nRT

Where,

P = Pressure

V = Volume

n = Number of moles

R = Universal gas constant ( 0.0821 atmL/molK )

T = Temperature

The new ideal expression is shown below, when the temperature is increased by factor 3.0.

  PV'= nR3T

Now, the new volume is calculated as:

  PV'PVnR3TnRT

Thus, new volume is:

  V'3V

Hence, at constant pressure, the volume of one mole of a gas is triple of the initial volume when the absolute temperature of a gas is increased by factor 3.0.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The effect on the volume of 1 mole of an ideal gas should be determined when three more number of moles of gas is added at constant pressure and temperature.

Concept Introduction:

Boyle's Law gives the relationship between Pressure (P) and Volume (V).

According to Boyle's Law, the volume of gas changes inversely with the pressure of the gas if temperature and amount of a gas are constant.

PV = constant

  1V

The pressure of a gas decreases with increase in volume; volume of a gas decreases with increase in pressure.

Charles’s Law gives the relationship between Volume (V) and Temperature (T)

According to Charles’s Law, the volume of gas has direct relationship with temperature of the gas if pressure and amount of a gas are constant.

  VT = constant

  VαT

If the temperature or volume of a gas changes without any change in amount of a gas and pressure, then the final volume and temperature will give the same VT as the initial volume and temperature. Then, a relationship between initial and final VT can be set as equal to each other.

Charles’s Law can be written as:

  V1T1=V2T2 (Pressure and amount of a gas remain constant)

Where, T1 and V1 are the initial temperature and volume.

T2 and V2 are the final temperature and volume.

Avogadro's Law:

At same condition of pressure and temperature, equal volume of gases has same number of moles. In other words, at same temperature and pressure; one mole of a gas has the same volume.

According to Avogadro's Law, at STP, 1 mole of a gas consist of 6.02×1023 occupies 22.4 L volume.

The mathematical expression is given as:

  Vn=constant(pressure, temperature fixed)

Amonton's Law:

The pressure of a gas is directly related with the absolute temperature at constant number of moles and volume.

The mathematical expression is given as:

  PαT

Or,

  PT=constant (Volume, number of moles fixed)

Answer to Problem 5.14P

At constant pressure and temperature, the volume of one mole of a gas is increase by factor 4.0 when three more number of moles of a gas is added.

Explanation of Solution

Ideal gas law gives the relation between pressure, volume, number of moles and temperature.

The ideal gas law is:

  PV= nRT

Where,

P = Pressure

V = Volume

n = Number of moles

R = Universal gas constant ( 0.0821 atmL/molK )

T = Temperature

The new ideal expression is shown below, when three more number of moles of gas are added.

  PV'=(1+3)nRT

  PV'=4 nRT

Now, the new volume is calculated as:

  PV'PV4nRTnRT

Thus, new volume is:

  V'4V

Hence, at constant pressure and temperature, the volume of one mole of a gas is increase by factor 4.0 when three more number of moles of a gas is added.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Describe the principle of resonance and give a set of Lewis Structures to illustrate your explanation.
Don't used hand raiting
It is not unexpected that the methoxyl substituent on a cyclohexane ring prefers to adopt the equatorial conformation. OMe H A G₂ = +0.6 kcal/mol OMe What is unexpected is that the closely related 2-methoxytetrahydropyran prefers the axial conformation: H H OMe OMe A Gp=-0.6 kcal/mol Methoxy: CH3O group Please be specific and clearly write the reason why this is observed. This effect that provides stabilization of the axial OCH 3 group in this molecule is called the anomeric effect. [Recall in the way of example, the staggered conformer of ethane is more stable than eclipsed owing to bonding MO interacting with anti-bonding MO...]

Chapter 5 Solutions

Principles of General Chemistry

Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Each of the following processes caused the gas...Ch. 5 - What is the effect of the following on the volume...Ch. 5 - What is the effect of the following on the volume...Ch. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - If 1.4710-3mol of argon occupies a 75.0-mL...Ch. 5 - Prob. 5.22PCh. 5 - A 75.0-g sample of dinitrogen monoxide is confined...Ch. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - The density of a noble gas is 2.71g/L at 3.00 atm...Ch. 5 - Prob. 5.34PCh. 5 - When an evacuated 63.8-mL glass bulb is tilled...Ch. 5 - After 0.600 L of Ar at 1.20 atm and 227oC is mixed...Ch. 5 - A 355-mL container holds 0.146 g of Ne and an...Ch. 5 - How many grams of phosphorus react with 35.5 L of...Ch. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - Prob. 5.41PCh. 5 - Prob. 5.42PCh. 5 - How many liters of hydrogen gas are collected over...Ch. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.48PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - Prob. 5.51PCh. 5 - Prob. 5.52PCh. 5 - Prob. 5.53PCh. 5 - Prob. 5.54PCh. 5 - Prob. 5.55PCh. 5 - Prob. 5.56PCh. 5 - Prob. 5.57PCh. 5 - The graph below shows the distribution of...Ch. 5 - Prob. 5.59PCh. 5 - Prob. 5.60PCh. 5 - White phosphorus melts and then vaporizes at high...Ch. 5 - Helium (He) is the lightest noble gas component of...Ch. 5 - Prob. 5.63PCh. 5 - Prob. 5.64PCh. 5 - Prob. 5.65PCh. 5 - Prob. 5.66PCh. 5 - Does SF6(boilingpoint=16oCat1atm) behave more...Ch. 5 - Hemoglobin is the protein that transports O2...Ch. 5 - A baker uses sodium hydrogen carbonate (baking...Ch. 5 - Prob. 5.70PCh. 5 - Prob. 5.71PCh. 5 - Prob. 5.72PCh. 5 - Prob. 5.73PCh. 5 - Prob. 5.74PCh. 5 - Prob. 5.75PCh. 5 - Prob. 5.76PCh. 5 - Prob. 5.77PCh. 5 - Prob. 5.78PCh. 5 - Aluminum chloride is easily vaporized above 180C....Ch. 5 - An atmospheric chemist studying the pollutant SO2...Ch. 5 - The thermal decomposition of ethylene occurs...Ch. 5 - Prob. 5.82PCh. 5 - Analysis of a newly discovered gaseous...Ch. 5 - Prob. 5.84PCh. 5 - Prob. 5.85PCh. 5 - Containers A, B, and C are attached by closed...Ch. 5 - Prob. 5.87PCh. 5 - Prob. 5.88PCh. 5 - Prob. 5.89PCh. 5 - Prob. 5.90PCh. 5 - Prob. 5.91PCh. 5 - Prob. 5.92PCh. 5 - To study a key fuel-cell reaction, a chemical...Ch. 5 - Prob. 5.94PCh. 5 - Prob. 5.95PCh. 5 - Prob. 5.96PCh. 5 - Prob. 5.97PCh. 5 - Prob. 5.98PCh. 5 - Prob. 5.99PCh. 5 - In A, the picture shows a cylinder with 0.1 mol of...Ch. 5 - Prob. 5.101PCh. 5 - Prob. 5.102PCh. 5 - According to government standards, the 8h...Ch. 5 - One way to prevent emission of the pollutant NO...Ch. 5 - Prob. 5.105PCh. 5 - Prob. 5.106PCh. 5 - Prob. 5.107PCh. 5 - Prob. 5.108P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY