Organic Chemistry
Organic Chemistry
12th Edition
ISBN: 9781118875766
Author: T. W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 25PP
Interpretation Introduction

Interpretation:

The two chirality centres in chloramphenicol are to be identified and a three-dimensional formula for chloramphenicol is to be written.

Concept introduction:

The molecules or compounds which are non-superimposable or not identical with its mirror image are known as chiral molecules.

The pair of two mirror images which are non-identical are known as enantiomers and these are optically active.

The objects or molecules which are superimposable with their mirror images are achiral objects or molecules and these objects have a centre of symmetry or plane of symmetry.

The achiral compounds in which plane of symmetry is present internally and consists of chiral centres are known as meso compounds but they are optically inactive.

The stereoisomers which are non-superimposable on each other and not mirror images of each other are known as diastereomers.

Chiral molecules are capable of rotating plane polarized light

The molecules which are superimposable or identical with their mirror images are known as achiral molecules, and achiral molecules are not capable of rotating the plane-polarised light.

Plane of symmetry is the plane that bisects the molecule in two equal halves, such that they are mirror images of each other.

Compounds having plane of symmetry are usually achiral as they do not have different atoms around the central carbon atom.

The enantiomers, in which the path traced from the highest atomic number to the lowest atomic number is in an anticlockwise direction, are designated as S.

The enantiomers, in which the path traced from the highest atomic number to the lowest atomic number is in the clockwise direction, are designated as R.

The compounds or molecules which are superimposable with its mirror images are achiral objects or molecules and these objects have a centre of symmetry or plane of symmetry.

Blurred answer
Students have asked these similar questions
> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility
Don't use ai to answer I will report you answer
Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence point

Chapter 5 Solutions

Organic Chemistry

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning