Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 84CP
Consider a hot semi-infinite solid at an initial temperature of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A carbon steel pipe (thermal conductivity of 38 W/m oC) with an external diameter of 5 cm and a wall thickness of 4 mm, transports saturated water vapor to an equipment in which water evaporates from the sucrose solution to produce sugar. There are few curves in the system, so you decide to neglect their effects. The ambient temperature in which the pipe is located is 28°C and the temperature of the steam for the pressure in which it is in the line is 120°C. By using an empirical correlation to estimate the convection coefficient of the cooling law of Newton for steam condensing inside tubes you find the value of 15000 W/m 2 oC. This value is so high that we can neglect the resistance to convective transport inside the pipe, if you want, calculate the resistance in question and check. Considering an external convective coefficient of 25 W(m2 oC), we estimate that the water will lose ____________ W/m of pipe. If we want to insulate the pipe with urethane foam (conductivity between 0.016…
In thermodynamics, how do you differentiate a closed system with an adiabatic system? What is the difference in the equation used for calculating heat transfer? (If you know a good book or scientific article that contains info regarding this, please include. Thank you.)
In the special case of variation with time but not with position, the temperature of the medium changes uniformly with time. Such heat transfer systems are called -----------------.
Chapter 4 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 4 - What is the physical significance of the Biot...Ch. 4 - What is lumped system analysis? When is it...Ch. 4 - In what medium is the lumped system analysis more...Ch. 4 - For which solid is the lumped system analysis more...Ch. 4 - For which kinds of bodies made of the same...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider a hot baked potato on a plate. The...Ch. 4 - Consider a potato being baked in an oven that is...Ch. 4 - Consider two identical 4-kg pieces of roast beef....
Ch. 4 - Consider a sphere and a cylinder of equal volume...Ch. 4 - Obtain relations for the characteristic lengths of...Ch. 4 - Obtain a relation for the time required for a...Ch. 4 - A brick of 20310257mm in dimension is being burned...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Metal plates...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A 6-mm-thick stainless steel strip...Ch. 4 - After heat treatment, the 2-cm-thick metal plates...Ch. 4 - A long copper rod of diameter 2.0 cm is initially...Ch. 4 - Prob. 23PCh. 4 - Steel rods...Ch. 4 - To warm up some milk for a baby, a mother pours...Ch. 4 - A person is found dead at 5 p.m. in a room whose...Ch. 4 - Prob. 27PCh. 4 - In an experiment, the temperature of a hot gas...Ch. 4 - Prob. 29PCh. 4 - Pulverized coal particles are used in oxy-fuel...Ch. 4 - Oxy-fuel combustion power plants use pulverized...Ch. 4 - Plasma spraying is a process used for coating a...Ch. 4 - Consider a spherical shell satellite with outer...Ch. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36EPCh. 4 - Consider a sphere of diameter 5 cm, a cube of side...Ch. 4 - Prob. 38PCh. 4 - An egg is to be cooked to a certain level of...Ch. 4 - What is an infinitely long cylinder? When is it...Ch. 4 - What is the physical significance of the Fourier...Ch. 4 - Prob. 42CPCh. 4 - Prob. 43CPCh. 4 - Prob. 44CPCh. 4 - The Biot number during a heat transfer process...Ch. 4 - A body at an initial temperature of Ti, is brought...Ch. 4 - Prob. 47PCh. 4 - In a meat processing plant, 2-cm-thick steaks...Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Layers of 23-cm-thick meat slabs...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55EPCh. 4 - Prob. 56PCh. 4 - Prob. 57EPCh. 4 - Prob. 58PCh. 4 - A 30-cm-diameter, 4-m-high cylindrical column of a...Ch. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - For heat transfer purposes, an egg can be...Ch. 4 - Citrus fruits are very susceptible to cold...Ch. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A 9-cm-diameter potato...Ch. 4 - Chickens with an average mass of 1.7 kg...Ch. 4 - Prob. 76PCh. 4 - In Betty Crocker s Cookbook, it is stated that it...Ch. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Oranges of 2.5-in-diameter...Ch. 4 - Prob. 81EPCh. 4 - Under what conditions can a plane wall be treated...Ch. 4 - What is a semi-infinite medium? Give examples of...Ch. 4 - Consider a hot semi-infinite solid at an initial...Ch. 4 - Prob. 85EPCh. 4 - Prob. 86PCh. 4 - In areas where the air temperature remains below...Ch. 4 - Prob. 88PCh. 4 - A highway made of asphalt is initially at a...Ch. 4 - A thick aluminum block initially at 20C is...Ch. 4 - Prob. 91PCh. 4 - A thick wall made of refractory bricks...Ch. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - A thick wood slab (k=0.17W/m.K,=1.2810-7m2/s) and...Ch. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - A barefooted person whose feet are at 32C steps on...Ch. 4 - What is the product solution method? How is it...Ch. 4 - How is the product solution used to determine the...Ch. 4 - Prob. 105CPCh. 4 - Consider a short cylinder whose top and bottom...Ch. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - A hot dog can be considered to be a cylinder 5 in...Ch. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - A 2-cm-high cylindrical ice block...Ch. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119CPCh. 4 - How does refrigeration prevent or delay the...Ch. 4 - What are the environmental factors that affect the...Ch. 4 - What is the effect of cooking on the...Ch. 4 - Prob. 123CPCh. 4 - Prob. 124CPCh. 4 - Prob. 125CPCh. 4 - Prob. 126CPCh. 4 - How does the rate of freezing affect the...Ch. 4 - Prob. 128CPCh. 4 - Prob. 129CPCh. 4 - Prob. 130CPCh. 4 - Prob. 131CPCh. 4 - Prob. 132CPCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Chickens with an average mass of 2.2 kg and...Ch. 4 - Prob. 136EPCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - During a picnic on a hot summer day, the only...Ch. 4 - Two metal rods are being heated in an oven with...Ch. 4 - Stainless steel ball bearings...Ch. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - In Betty crockers Cookbook, it is stated that it...Ch. 4 - A watermelon initially at 35C is to be cooled by...Ch. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - Prob. 153PCh. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - Prob. 159PCh. 4 - Lumped system analysis of transient heat...Ch. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - An 18-cm-long, 16-cm-wide, and 12-cm-high hot iron...Ch. 4 - Prob. 164PCh. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 167PCh. 4 - Prob. 168PCh. 4 - A long 18-cm-diameter bar made of hardwood...Ch. 4 - Consider a 7.6-cm-long and 3-cm-diameter...Ch. 4 - Consider a 7.6-cm-diameter cylindrical lamb meat...Ch. 4 - Prob. 172PCh. 4 - A small chicken (k=0.45W/m.K,=0.1510-6m2/s) and...Ch. 4 - A potato may be approximated as a 5.7-cm-diameter...Ch. 4 - When water, as in a pond or lake, is heated by...Ch. 4 - A large chunk of tissue at 35C with a thermal...Ch. 4 - Prob. 177PCh. 4 - Citrus trees are very susceptible to cold weather,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.60 Two electric resistance heaters with a 20 cm length and a 2 cm diameter are inserted into a well-insulated 40-L tank of water that is initially at 300 K. If each heater dissipates 500 W, what is the time required for bringing the water temperature in the tank to 340 K? State your assumption for your analysis.arrow_forward2.34 Show that the temperature distribution in a sphere of radius . made of a homogeneous material in which energy is released at a uniform rate per unit volume , isarrow_forward2-102 A long homogeneous resistance wire of radius r = 0.6 cm and thermal conductivity k 15.2 W/m-K is being used to boil water at atmospheric pressure by the passage of electric current. Heat is generated in the wire uniformly as a result of resistance heating at a rate of 16.4 W/cm3. The heat generated is transferred to water at 100°C by convection with an average heat transfer coefficient of h 3200 W/m2-K. Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary conditions for heat conduction through the wire, (b) obtain a relation for the variation of temperature in the wire by solving the differential equation, and (c) determine the temperature at the centerline of the wire. Answer: () 125°C FIGURE P2-102 т. Water Resistance heaterarrow_forward
- Q2: A long 25 cm diameter cylindrical shaft made of stainless steel 304 comes out of an oven at a uniform temperature of 500 •C. The shaft is then allowed to cool slowly in an environment chamber at 180 °C with an average heat transfer coefficient of h=90 W/m2. °C. Determine the temperature at the center of the shaft 40 min after the start of the cooling process. Also, determine the heat transfer per unit length of the shaft during this time period. Taking p=7900 kg/m3, * .Cp%3477 J/kg. •C, k= 14.9arrow_forwardConsider the rate of conductive heat transfer from the inside of an animal’s body (at 37 ˚C) tothe cooler surroundings (initially at 22 ˚C). Order the following from lowest to highestimpact. Justify your answer. The outside temperature increases to 27 ˚CThe thermal conductivity of the animal’s insulating layer is doubledThe thickness of the animal’s insulating layer is halvedThe volume of the animal is doubledThe surface of the animal becomes coated in an extremely thin layer of black oilarrow_forwardHumans are able to control their rates of heat production and heat loss to maintain a nearly constant core temperature of Tc = 37°C under a wide range of environmental conditions. This process is called thermoregulation. From the perspective of calculating heat transfer between a human body and its surroundings, we focus on a layer of skin and fat, with its outer surface exposed to the environment and its inner surface at a temperature slightly less than the core temperature, Ti = 35°C = 308 K. Consider a person with a skin/fat layer of thickness L = 2 mm and effective thermal conductivity k = 0.3 Wm ⋅ K. The person has a surface area A = 1.8 m2 and is dressed in a bathing suit. The emissivity of the skin is ε = 0.95.a). When the person is in still air at T∞ = 308 K, what is the skin surface temperature and rate of heat loss to the environment? Convection heat transfer to the air is characterized by a free convection coefficient of h = 2 W?2 ⋅ Kb). When the person is in water at T∞ =…arrow_forward
- Consider hotdog being cooked in boiling water in a pan. Would the heat transfer be modeled as one-dimensional or two-dimensional? Would the heat transfer be steady or transient? Explain.arrow_forward1. For heat transfer purposes, an egg can be considered to be a 4-cm diameter sphere having the properties of water. An egg that is initially at 8°C is dropped into boiling water at 100°C. The heat transfer coefficient at the surface of the egg is estimated to be 400 W/m2°C. If the egg is considered cooked when its center temperature reaches 60°C, determine how long the egg should be kept in the boiling water? Assume negligible internal resistance íarrow_forwardBrass plate of 6 cm thickness that are initially at 25 °C are heated by passing it through an oven that is maintained at 700 •C. The plate remains in the oven for a period of 10 minutes. Taking the heat transfer coefficient (h= 130 W/m2. °C). Determine the center temperature of the plate and the temperature at the distance of 2 cm from the center of the plate. Taking p=8530 kg/m3, Cp=380 J/kg. • * .C, a= 33.9*10-6 m2/sarrow_forward
- Heat mass transferarrow_forwardA pipe in a manufacturing plant is transporting superheated vapor at a mass flow rate of 0.3 kg/s. The pipe is 10 m long and has an inner diameter of 5 cm and a wall thickness of 6 mm. The pipe has a thermal conductivity of 17 W/m⋅K, and the inner pipe surface is at a uniform temperature of 120° C. The temperature drop between the inlet and exit of the pipe is 7° C, and the constant pressure specific heat of vapor is 2 190 J/kg⋅°C. If the air temperature in the manufacturing plant is 25° C, determine the heat transfer coefficient as a result of convection between the outer pipe surface and the surrounding air.arrow_forward1 A 15-cm-diameter aluminum ball is to be heated from 80°C to an average temperature of 200°C. Taking the average density and specific heat of aluminum in this temperature range to be 2700 kg/m3 and Cp 0.90 kJ/kg °C, respectively, determine the amount of energy that needs to be transferred to the aluminum ball. 1.Canai louarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license