Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 12P
Obtain relations for the characteristic lengths of a large plane wall of thickness 2L, a very long cylinder of radius
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 15 cm outer diameter steam pipe is lagged to 25 cm diameter with magnesia of thermal conductivity 0.05 W/mK and further lagged with 30 cm diameter laminated asbestos of thermal conductivity 0.07 W/mK. Inner temperature of steam is 200° C and outer temperature is 25° C. Calculate the mass of steam condensed per hour for 120 m length of pipe. Assume latent heat of steam is 1900 kJ/kg.
E
prove that heat transfer is a path function?
Chapter 4 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 4 - What is the physical significance of the Biot...Ch. 4 - What is lumped system analysis? When is it...Ch. 4 - In what medium is the lumped system analysis more...Ch. 4 - For which solid is the lumped system analysis more...Ch. 4 - For which kinds of bodies made of the same...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider a hot baked potato on a plate. The...Ch. 4 - Consider a potato being baked in an oven that is...Ch. 4 - Consider two identical 4-kg pieces of roast beef....
Ch. 4 - Consider a sphere and a cylinder of equal volume...Ch. 4 - Obtain relations for the characteristic lengths of...Ch. 4 - Obtain a relation for the time required for a...Ch. 4 - A brick of 20310257mm in dimension is being burned...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Metal plates...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A 6-mm-thick stainless steel strip...Ch. 4 - After heat treatment, the 2-cm-thick metal plates...Ch. 4 - A long copper rod of diameter 2.0 cm is initially...Ch. 4 - Prob. 23PCh. 4 - Steel rods...Ch. 4 - To warm up some milk for a baby, a mother pours...Ch. 4 - A person is found dead at 5 p.m. in a room whose...Ch. 4 - Prob. 27PCh. 4 - In an experiment, the temperature of a hot gas...Ch. 4 - Prob. 29PCh. 4 - Pulverized coal particles are used in oxy-fuel...Ch. 4 - Oxy-fuel combustion power plants use pulverized...Ch. 4 - Plasma spraying is a process used for coating a...Ch. 4 - Consider a spherical shell satellite with outer...Ch. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36EPCh. 4 - Consider a sphere of diameter 5 cm, a cube of side...Ch. 4 - Prob. 38PCh. 4 - An egg is to be cooked to a certain level of...Ch. 4 - What is an infinitely long cylinder? When is it...Ch. 4 - What is the physical significance of the Fourier...Ch. 4 - Prob. 42CPCh. 4 - Prob. 43CPCh. 4 - Prob. 44CPCh. 4 - The Biot number during a heat transfer process...Ch. 4 - A body at an initial temperature of Ti, is brought...Ch. 4 - Prob. 47PCh. 4 - In a meat processing plant, 2-cm-thick steaks...Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Layers of 23-cm-thick meat slabs...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55EPCh. 4 - Prob. 56PCh. 4 - Prob. 57EPCh. 4 - Prob. 58PCh. 4 - A 30-cm-diameter, 4-m-high cylindrical column of a...Ch. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - For heat transfer purposes, an egg can be...Ch. 4 - Citrus fruits are very susceptible to cold...Ch. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A 9-cm-diameter potato...Ch. 4 - Chickens with an average mass of 1.7 kg...Ch. 4 - Prob. 76PCh. 4 - In Betty Crocker s Cookbook, it is stated that it...Ch. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Oranges of 2.5-in-diameter...Ch. 4 - Prob. 81EPCh. 4 - Under what conditions can a plane wall be treated...Ch. 4 - What is a semi-infinite medium? Give examples of...Ch. 4 - Consider a hot semi-infinite solid at an initial...Ch. 4 - Prob. 85EPCh. 4 - Prob. 86PCh. 4 - In areas where the air temperature remains below...Ch. 4 - Prob. 88PCh. 4 - A highway made of asphalt is initially at a...Ch. 4 - A thick aluminum block initially at 20C is...Ch. 4 - Prob. 91PCh. 4 - A thick wall made of refractory bricks...Ch. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - A thick wood slab (k=0.17W/m.K,=1.2810-7m2/s) and...Ch. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - A barefooted person whose feet are at 32C steps on...Ch. 4 - What is the product solution method? How is it...Ch. 4 - How is the product solution used to determine the...Ch. 4 - Prob. 105CPCh. 4 - Consider a short cylinder whose top and bottom...Ch. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - A hot dog can be considered to be a cylinder 5 in...Ch. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - A 2-cm-high cylindrical ice block...Ch. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119CPCh. 4 - How does refrigeration prevent or delay the...Ch. 4 - What are the environmental factors that affect the...Ch. 4 - What is the effect of cooking on the...Ch. 4 - Prob. 123CPCh. 4 - Prob. 124CPCh. 4 - Prob. 125CPCh. 4 - Prob. 126CPCh. 4 - How does the rate of freezing affect the...Ch. 4 - Prob. 128CPCh. 4 - Prob. 129CPCh. 4 - Prob. 130CPCh. 4 - Prob. 131CPCh. 4 - Prob. 132CPCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Chickens with an average mass of 2.2 kg and...Ch. 4 - Prob. 136EPCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - During a picnic on a hot summer day, the only...Ch. 4 - Two metal rods are being heated in an oven with...Ch. 4 - Stainless steel ball bearings...Ch. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - In Betty crockers Cookbook, it is stated that it...Ch. 4 - A watermelon initially at 35C is to be cooled by...Ch. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - Prob. 153PCh. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - Prob. 159PCh. 4 - Lumped system analysis of transient heat...Ch. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - An 18-cm-long, 16-cm-wide, and 12-cm-high hot iron...Ch. 4 - Prob. 164PCh. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 167PCh. 4 - Prob. 168PCh. 4 - A long 18-cm-diameter bar made of hardwood...Ch. 4 - Consider a 7.6-cm-long and 3-cm-diameter...Ch. 4 - Consider a 7.6-cm-diameter cylindrical lamb meat...Ch. 4 - Prob. 172PCh. 4 - A small chicken (k=0.45W/m.K,=0.1510-6m2/s) and...Ch. 4 - A potato may be approximated as a 5.7-cm-diameter...Ch. 4 - When water, as in a pond or lake, is heated by...Ch. 4 - A large chunk of tissue at 35C with a thermal...Ch. 4 - Prob. 177PCh. 4 - Citrus trees are very susceptible to cold weather,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What’s the correct answer for this please ?arrow_forward4. Two aluminum blocks with different dimensions, but the same mass are shown in the figure. The dimensions of block 1 are 0.25 cm in thickness, 3 cm in width, and 36 cm in length. The dimensions of block 2 are 3 cm for each side of the cube. Aluminum has a density of 2700 kg/m³ and a specific heat capacity of 900 J/kg-°C. The value of the heat transfer coefficient to the surrounding air is 10 W/m²-°C. 0.25 cm 36 cm 3 cm 3 cm Block 1 3 cm Block 2 3 cm Complete the following. (a) Calculate thermal time constant (in min) for both blocks. (b) Each block is heated to an initial temperature 120 °C and then allowed to cool in the surrounding air which is at 20 °C. Write a script file in MATLAB® that plots the temperature as a function of time, T(t), for both blocks on the same graph. Plot the temperature of block 1 using a solid black line and the temperature of block 2 using a dotted black line. Plot for a duration equal to four of the longer time constant between blocks 1 and 2. The time…arrow_forwardA flat plate in an ambient at temperature Tꝏ received from a source the net radiant heat flux q” (fig. 3-52). The thickness of the plate d is much less than its length 2L; the third dimension of the plate extends to infinity. The heat transfer coefficient from the ends of the plate, if needed, may be taken to be h3 ≠h1 ≠h2. Find the temperature distribution in the system. Please type answer note write by hend.arrow_forward
- The subject is Mechanics of Deformable Bodiesarrow_forwardi need the answer quicklyarrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = = W 3 m. k . Ay m-1, n m, n | Δx=" m, n+1 m, n-1 The side insulatedarrow_forward
- In between two fluids at two different temperatures (as shown in the figure) there is a rectangular wall with 30 m? cros-sectional area and width 20 cm in which energy is generated by an electrical wiring system. The temperature distribution in the Wall is given by: Cold fluid at Hot fluid at Wall 160 °C 20 °C T(x)= 140-620x+52x? Where T (°C) and x (m) k= 12 W/m.K a) Calculate the heat transfer coefficients at the hot and cold fluid sides. b) Calculate the energy generation per volume in the wallarrow_forwardThree (3) bricks, specifically A, B, and C were arranged horizontally in such a way that it can be illustrated as a sandwich panel. Consider the system to be in series and in the order of Brick A, Brick B and Brick C. The outside surface temperature of Brick A is 1,500℃ and 150 ℃ for the outside surface of Brick C. The thermal conductivities for Brick A, Brick B and Brick C, are 2 ?/? °? , 0.50 ?/? °? , 60 ?/? °?. The thickness of Brick A and Brick C are 50 cm and 22 cm. The rate of heat transfer per unit area is 1,000 ?/?2 . Determine the following: The thickness of Brick B in the unit of mm. Assume that all the conditions were retain except that the thickness of Brick B was increased to 800 mm, what is the new value for the rate of heat transfer per unit area in ???/ℎ? . ??2 please explain the principles to solve thisarrow_forwardA Multi-layer wall of a building is shown in the following figure. The thermal conductivity of A, B, C, D, and E are: 30, 5, 1.67, 10.5, 6 W/m k, respectively. Assume one dimentional heat transfer. The area of A = D = E =4 m?, and B = C= 2 m². The thickness of each layer is 10 cm. The temperature of surface A is 25 °C, and the temperature of surface E is 38 °C. Calculate the heat transfer rate through the wall. B A D E Carrow_forward
- Heat transfer: What do the following formulas refer to? equation 1 pc (+ ux Ux ƏT at ƏT + uy at for the parallelepid (327) (²) (2²7) for the sphere for the cylinder 7-2 Ə r Lar (+U₂ ²37) = k at. ƏT (²³)] = 12 or x at (²0)] : 2 = ər. 1 ƏT x at 1 ат ос дtarrow_forwardA:Find the amount of heat transferred through an iron fin of thickness 5 mm, length 10 cm and width 100 cm. Also determine the temperature difference e at the tip of the fin at: 1- adiabatic tip, 2-heat convection at the tip. Assuming the atmospheric temperature of 28°C K=50 w/mK, h=10 w/m’K, O,=80°C. B-Why is the dimensional heat flow assumption important in the analysis of fins problems? C- Why are the annular fins more efficiency than others?.arrow_forwardAn insulated steam pipe is routed horizontally through an unheated room, then vertically to the ceiling. The pipe is insulated, and the outside diameter of the insulation is 15 cm. The horizontal and vertical lengths of pipe are both 4 m long. The outside-surface temperature of the insulation is 50°C, and the room temperature is 5°C. How much heat is lost from the insulation by convection?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license