Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 40ECP
What is an infinitely long cylinder? When is it proper to treat an actual cylinder as being infinitely long, and when is it not? For example, is it proper to use this model when finding the temperatures near the bottom or top surfaces of a cylinder? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An isolating wall (made up of 2-10mm thick plywood with 5mm woven silica sheet in between) encloses a steam-room to prevent the outside area from having the same temperature as the inside of the room. If the total area of the wall is 100 sq.m. and coefficient of thermal conductivity (k) for plywood and silica sheets are 0.12 and 0.015 W/mK respectively, what is the rate of heat transfer if the inside temperature is 800 °C while the outside is 42°C? answer must be in Watts
An isolating wall (made up of 2-10mm thick plywood with 5mm woven
silica sheet in between) encloses a steam-room to prevent the outside
area from having the same temperature as the inside of the room. If the
total area of the wall is 100 sq.m. and coefficient of thermal conductivity
(k) for plywood and silica sheets are 0.12 and 0.015 W/mK respecțively,
what is the rate of heat transfer if the inside temperature is 800 °C while
the outside is 42°C? answer must be in Watts *
Your answer
2-A: Give an example system or component in daily life in which all three modes of heat transfer are
important and need to be accounted for.
2-B: (a) What is your understanding of the Thermal boundary layer? (b) How do you define the
thermal boundary layer thickness?
2-C: Is the lumped capacitance method of analysis likely to be more applicable for cooling of a hot
solid made of aluminum or glass? Explain.
Chapter 4 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 4 - What is the physical significance of the Biot...Ch. 4 - What is lumped system analysis? When is it...Ch. 4 - In what medium is the lumped system analysis more...Ch. 4 - For which solid is the lumped system analysis more...Ch. 4 - For which kinds of bodies made of the same...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider a hot baked potato on a plate. The...Ch. 4 - Consider a potato being baked in an oven that is...Ch. 4 - Consider two identical 4-kg pieces of roast beef....
Ch. 4 - Consider a sphere and a cylinder of equal volume...Ch. 4 - Obtain relations for the characteristic lengths of...Ch. 4 - Obtain a relation for the time required for a...Ch. 4 - A brick of 20310257mm in dimension is being burned...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Metal plates...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A 6-mm-thick stainless steel strip...Ch. 4 - After heat treatment, the 2-cm-thick metal plates...Ch. 4 - A long copper rod of diameter 2.0 cm is initially...Ch. 4 - Prob. 23PCh. 4 - Steel rods...Ch. 4 - To warm up some milk for a baby, a mother pours...Ch. 4 - A person is found dead at 5 p.m. in a room whose...Ch. 4 - Prob. 27PCh. 4 - In an experiment, the temperature of a hot gas...Ch. 4 - Prob. 29PCh. 4 - Pulverized coal particles are used in oxy-fuel...Ch. 4 - Oxy-fuel combustion power plants use pulverized...Ch. 4 - Plasma spraying is a process used for coating a...Ch. 4 - Consider a spherical shell satellite with outer...Ch. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36EPCh. 4 - Consider a sphere of diameter 5 cm, a cube of side...Ch. 4 - Prob. 38PCh. 4 - An egg is to be cooked to a certain level of...Ch. 4 - What is an infinitely long cylinder? When is it...Ch. 4 - What is the physical significance of the Fourier...Ch. 4 - Prob. 42CPCh. 4 - Prob. 43CPCh. 4 - Prob. 44CPCh. 4 - The Biot number during a heat transfer process...Ch. 4 - A body at an initial temperature of Ti, is brought...Ch. 4 - Prob. 47PCh. 4 - In a meat processing plant, 2-cm-thick steaks...Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Layers of 23-cm-thick meat slabs...Ch. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55EPCh. 4 - Prob. 56PCh. 4 - Prob. 57EPCh. 4 - Prob. 58PCh. 4 - A 30-cm-diameter, 4-m-high cylindrical column of a...Ch. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - For heat transfer purposes, an egg can be...Ch. 4 - Citrus fruits are very susceptible to cold...Ch. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A 9-cm-diameter potato...Ch. 4 - Chickens with an average mass of 1.7 kg...Ch. 4 - Prob. 76PCh. 4 - In Betty Crocker s Cookbook, it is stated that it...Ch. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Oranges of 2.5-in-diameter...Ch. 4 - Prob. 81EPCh. 4 - Under what conditions can a plane wall be treated...Ch. 4 - What is a semi-infinite medium? Give examples of...Ch. 4 - Consider a hot semi-infinite solid at an initial...Ch. 4 - Prob. 85EPCh. 4 - Prob. 86PCh. 4 - In areas where the air temperature remains below...Ch. 4 - Prob. 88PCh. 4 - A highway made of asphalt is initially at a...Ch. 4 - A thick aluminum block initially at 20C is...Ch. 4 - Prob. 91PCh. 4 - A thick wall made of refractory bricks...Ch. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - A thick wood slab (k=0.17W/m.K,=1.2810-7m2/s) and...Ch. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - A barefooted person whose feet are at 32C steps on...Ch. 4 - What is the product solution method? How is it...Ch. 4 - How is the product solution used to determine the...Ch. 4 - Prob. 105CPCh. 4 - Consider a short cylinder whose top and bottom...Ch. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - A hot dog can be considered to be a cylinder 5 in...Ch. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - A 2-cm-high cylindrical ice block...Ch. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119CPCh. 4 - How does refrigeration prevent or delay the...Ch. 4 - What are the environmental factors that affect the...Ch. 4 - What is the effect of cooking on the...Ch. 4 - Prob. 123CPCh. 4 - Prob. 124CPCh. 4 - Prob. 125CPCh. 4 - Prob. 126CPCh. 4 - How does the rate of freezing affect the...Ch. 4 - Prob. 128CPCh. 4 - Prob. 129CPCh. 4 - Prob. 130CPCh. 4 - Prob. 131CPCh. 4 - Prob. 132CPCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Chickens with an average mass of 2.2 kg and...Ch. 4 - Prob. 136EPCh. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 4 - Prob. 140PCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - During a picnic on a hot summer day, the only...Ch. 4 - Two metal rods are being heated in an oven with...Ch. 4 - Stainless steel ball bearings...Ch. 4 - Prob. 146PCh. 4 - Prob. 147PCh. 4 - In Betty crockers Cookbook, it is stated that it...Ch. 4 - A watermelon initially at 35C is to be cooled by...Ch. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - Prob. 152PCh. 4 - Prob. 153PCh. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - Prob. 159PCh. 4 - Lumped system analysis of transient heat...Ch. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - An 18-cm-long, 16-cm-wide, and 12-cm-high hot iron...Ch. 4 - Prob. 164PCh. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - Prob. 167PCh. 4 - Prob. 168PCh. 4 - A long 18-cm-diameter bar made of hardwood...Ch. 4 - Consider a 7.6-cm-long and 3-cm-diameter...Ch. 4 - Consider a 7.6-cm-diameter cylindrical lamb meat...Ch. 4 - Prob. 172PCh. 4 - A small chicken (k=0.45W/m.K,=0.1510-6m2/s) and...Ch. 4 - A potato may be approximated as a 5.7-cm-diameter...Ch. 4 - When water, as in a pond or lake, is heated by...Ch. 4 - A large chunk of tissue at 35C with a thermal...Ch. 4 - Prob. 177PCh. 4 - Citrus trees are very susceptible to cold weather,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.29 A spherical interplanetary probe with a 30-cm diameter contains electronic equipment that dissipates 100 W. If the probe surface has an emissivity of 0.8, what is its surface temperature in outer space? State your assumptions in the calculations.arrow_forward1.60 Two electric resistance heaters with a 20 cm length and a 2 cm diameter are inserted into a well-insulated 40-L tank of water that is initially at 300 K. If each heater dissipates 500 W, what is the time required for bringing the water temperature in the tank to 340 K? State your assumption for your analysis.arrow_forward1.19 A cryogenic fluid is stored in a 0.3-m-diameter spherical container is still air. If the convection heat transfer coefficient between the outer surface of the container and the air is 6.8 , the temperature of the air is 27°C, and the temperature of the surface of the sphere is –183°C, determine the rate of heat transfer by convection.arrow_forward
- It is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not be disturbed by hand contact. In this case, determine the insulation material thickness to be used. Insulation material thermal conductivity coefficient is 0.066 insulation W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forwardasaparrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not disturb in contact with hands. In this case, determine the insulation material thickness to be used. The thermal conductivity coefficient of the insulation material is insulation 0.066 W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forward
- 3) The two sides of a large plan wall are maintained at constant temperatures of T₁ = 120°C and T₂ = 50°C, respectively. If you know that the wall thickness L = 0.2 m, thermal conductivity k = 1.2 W/m.K, and surface area A= 15 m². Determine (a) the variation of temperature within the wall and the value of temperature at x = 0.1 m and (b) the rate of heat conduction through the wall under steady conditions. -02-1arrow_forwardHi, can you help me to answer this question using the first law of thermodynamics? On a hot summer day a student turns his fan on when he leaves his room in themorning. When he returns in the evening will the room be warmer or cooler than theneighborouing rooms ? Explain your answer using the first law of thermodynamics.Assume ALL doors and windows are kept closed.arrow_forwardConsider a very long, solid rod of 2.5-cm diameter where a portion is inserted in a furnace while the rest of the length is exposed to air at 27°C, resembling a fin. After steady state had been reached, a thermocouple was used to measure the temperatures at the base of the fin and at a point that is 7.6 cm from the base. The temperatures were found to be 126°C and 91°C, respectively. The heat transfer coefficient over the surface of the rod exposed to the air was estimated to be 22.7 W/m²·K. a) What is the thermal conductivity of the rod? Can this be deemed an effective fin? b) If the fin was cut at 10 cm from the base, making the new fin tip exposed to the air, what is the fin heat transfer rate and the fin efficiency? Assume the temperature at the base and other properties are maintained, including the thermal conductivity of the rod solved in (a)arrow_forward
- Solve it quickly pleasearrow_forwardConsider a long, pure iron rod with a diameter of 2 cm and at an initial uniform temperature of 27 C. It is suddenly heated by uniform and constant convection with T_inf = 227 C and h_inf = 200 W/m^2 K. Ignoring radiation, determine the center temperature of the rod after 45 seconds.arrow_forwardA 2x2-m glass window, 1 cm thick is subjected to 10°C and 3°C inner and outer temperatures respectively. If the thermal conductivity of the glass is 0.78 W/m-°C, what is the amount of heat loss, in kl, through the glass over a period of 5 hours?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license