Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.16QP
In Problem 4.15, plot the stress–strain relationship and determine the following:
- a. the elastic modulus
- b. the proportional limit
- c. the yield strength at a strain offset of 0.002
- d. the tensile strength
- e. the magnitude of the load required to produce an increase in length of 0.016 in.
- f. the final deformation, if the specimen is unloaded after being strained by the amount specified in (e)
- g. in designing a typical structure made of this material, would you expect the stress applied in (e) to be reasonable? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A steel bar, whose cross section is 0.60 inch by 4.10 inches, was tested in tension. An axial load of P = 31,025 lb. produced a deformation of 0.115 inch over a gauge length of 2.10 inches and a decrease of 0.0080 inch in the 0.60-inch thickness of the bar.
a. Determine the lateral strain.
b. Determine the axial strain.
c. Determine the Poisson’s ratio v.
d. Determine the decrease in the 4.05-in. cross-sectional dimension (in inches).
2. A steel bar, whose cross section is 0.55 inch by 4.05 inches, was tested in
tension. An axial load of P = 30,500 lb. produced a deformation of 0.105 inch over
a gauge length of 2.05 inches and a decrease of 0.0075 inch in the 0.55-inch
thickness of the bar.
Determine the lateral strain. *
Your answer
Determine the axial strain.
Your answer
Determine the Poisson's ratio v.
*
Your answer
Determine the decrease in the 4.05-in. cross-sectional dimension (in inches). *
Your answer
Testing a round steel alloy bar with a diameter of 15 mm and a gauge length of 250 mm produced the stress–strain relationship shown in Figure Determinea. the elastic modulusb. the proportional limitc. the yield strength at a strain offset of 0.002d. the tensile strengthe. the magnitude of the load required to produce an increase in length of 0.38 mmf. the final deformation, if the specimen is unloaded after being strained by the amount specified in (e)g. In designing a typical structure made of this material, would you expect the stress applied in (e) reasonable? Why?
Chapter 4 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 4 - Name the two primary factors that make aluminum an...Ch. 4 - Prob. 4.2QPCh. 4 - An aluminum alloy specimen with a radius of 0.28...Ch. 4 - An aluminum alloy bar with a radius of 7 mm was...Ch. 4 - Decode the characteristics of a 6063 T831...Ch. 4 - A round aluminum alloy bar with a 0.6 in. diameter...Ch. 4 - An aluminum alloy bar with a rectangular cross...Ch. 4 - A round aluminum alloy bar with a 0.25-in....Ch. 4 - An aluminum alloy rod has a circular cross section...Ch. 4 - An aluminum alloy cylinder with a diameter of 3...
Ch. 4 - A 3003-H14 aluminum alloy rod with 0.5 in....Ch. 4 - The stressstrain relation of an aluminum alloy bar...Ch. 4 - An aluminum specimen originally 300 mm long is...Ch. 4 - A tension stress of 40 ksi was applied on a 12-in....Ch. 4 - A tension test was performed on an aluminum alloy...Ch. 4 - In Problem 4.15, plot the stressstrain...Ch. 4 - Referring to Figure 4.5, determine approximate...Ch. 4 - Prob. 4.18QPCh. 4 - A tensile stress is applied along the long axis of...Ch. 4 - A cylindrical aluminum alloy rod with a 0.5 in....Ch. 4 - Prob. 4.21QPCh. 4 - Discuss galvanic corrosion of aluminum. How can...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The results of a tensile test are shown in Table 1.5.2. The test was performed on a metal specimen with a circular cross section. The diameter was 3 8 inch and the gage length (The length over which the elongation is measured) was 2 inches. a. Use the data in Table 1.5.2 to produce a table of stress and strain values. b. Plot the stress-strain data and draw a best-fit curve. c. Compute the, modulus of elasticity from the initial slope of the curve. d. Estimate the yield stress.arrow_forwardThe data in Table 1.5.3 were obtained from a tensile test of a metal specimen with a rectangular cross section of 0.2011in.2 in area and a gage length (the length over which the elongation is measured) of 2.000 inches. The specimen was not loaded to failure. a. Generate a table of stress and strain values. b. Plot these values and draw a best-fit line to obtain a stress-strain curve. c. Determine the modulus of elasticity from the slope of the linear portion of the curve. d. Estimate the value of the proportional limit. e. Use the 0.2 offset method to determine the yield stress.arrow_forwardA cylindrical specimen of stainless steel having a diameter of 12.8 mm (0.505 in.) and a gauge length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics shown in the following table: (see attached picture) (a) Plot the data as engineering stress versus engineering strain. (b) Compute the modulus of elasticity. (c) Determine the yield strength at a strain offset of 0.002.(d) Determine the tensile strength of this alloy.e) What is the approximate ductility, in percent elongation? (f) Compute the modulus of resilience.arrow_forward
- A cylindrical specimen of stainless steel having a diameter of 12.8 mm (0.505 in.) and a gauge length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics shown in the following table to answer the following: a. Plot the data as engineering stress versus engineering strain. b. Compute the modulus of elasticity. 66 c. Determine the yield strength at a strain offset of 0.002. d. Determine the tensile strength of this alloy. e. What is the approximate ductility, in percent elongation? f. Compute the modulus of resiliencearrow_forwardPROBLEM 1 A steel rod with a cross sectional area of 150 mm? is stretched between two fixed points. The tensile load at 20°C is 5000 N. a.) What will be the stress at -20°C? b.) At what temperature will the stress be zero? Assume a = 11 .7 µm/m°C, and E = 200 Gpa *Show geometry of deformation ©sidewararrow_forwardA tensile test specimen of aluminum alloy having a diameter of 0.5 in. and a gage length of 2 in. was tested to fracture. The complete stress-strain diagram for this specimen is shown below to the left. The small strain portion of this diagram has been enlarged (to the right) to show in more detail the linear portion of the stress-strain diagram. Determine (a) Young's modulus or modulus of elasticity (i.e., the slope of linear portion), (b) yield stress (using the so-called 0.2% offset method from the lecture notes), (c) yield strain (i.e., the strain corresponding to yield stress, not the 0.2%!), (d) ultimate strength (i.e., the peak in stress-strain diagram), (e) rupture stress (i.e., stress at breaking/failure), (f) rupture strain (i.e., the strain corresponding to rupture stress). 80 70 70 60 60 50 50 40 30 30 20 20 10 10 0.005 0.01 0.015 0.02 Strain (in/in) Strain (in/in) Stress (ksi) 0.015 - 0.03 - 0.12 - 0.135 - 0.15 Stress (ksi)arrow_forward
- Part 2arrow_forwardA steel alloy specimen having a rectangular cross section of dimensions 19.1 mm x 3.1 mm (0.7520 in. × 0.1220 in.) has the stress-strain behavior shown in the Animated Figure 6.22b. If this specimen is subjected to a tensile force of 98290 N (22100 Ib;) then (a) Determine the amount of elastic strain induced. (b) Determine the amount of plastic strain induced. (c) If its original length is 610 mm, what will be its final length after this force is applied and then released? The elastic modulus for steel is 207 GPa. (a) i (b) i (c) i mmarrow_forward3. The distribution of stress in an aluminum machine component is given (in megapascals) by Ox = y + z? Oy = x + z Oz = 3x + y Txy = 3z2 Tyz = x Txz = %3D Calculate the state of strain at a point positioned at (1,2,4). Use E=70 GPa and v = 0.3arrow_forward
- The shown figure represents the stress-strain relations of metals A and B during tension tests until fracture.Determine the following for the two metals (show all calculations and units):a. Proportional limitb. Yield stress at an offset strain of 0.002 in./in.c. Ultimate strengthd. Modulus of resiliencee. Toughnessf. Which metal is more ductile? Why?arrow_forwardOn the diagram, what is point 1?arrow_forwardYour answer is incorrect. An extruded polymer beam is subjected to a bending moment M. The length of the beam is L = 500 mm. The cross-sectional dimensions of the beam areb1 = 35 mm, d1= 115 mm, b2= 21 mm, d2 = 21 mm, and a =7 mm. For this material, the allowable tensile bending stress is 15 MPa, and the allowable compressive bending stress is 14 MPa. Determine the largest moment M that can be %3D %3D %3D %3D %3D %3D applied as shown to the beam. b2 a 不 d2 d1 b1 Answer: N-m M% =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Mechanical Properties of Material; Author: Civil Engineering;https://www.youtube.com/watch?v=UZkUvWiNeDs;License: Standard YouTube License, CC-BY