Materials for Civil and Construction Engineers (4th Edition)
Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.7QP

An aluminum alloy bar with a rectangular cross section that has a width of 12.5 mm, thickness of 6.25 mm, and a gauge length of 50 mm was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.7. Using a spreadsheet program, obtain the following:

a. A plot of the stress–strain relationship. Label the axes and show units.

b. A plot of the linear portion of the stress–strain relationship. Determine the modulus of elasticity using the best fit approach.

c. Proportional limit.

d. Yield stress at an offset strain of 0.002 m/m.

e. Tangent modulus at a stress of 450 MPa.

f. Secant modulus at a stress of 450 MPa.

TABLE P4.7

Load (kN) L (mm) Load (kN) L (mm)
0 0 33.5 1.486
3.3 0.025 35.3 2.189
14.0 0.115 37.8 3.390
25.0 0.220 39.8 4.829
29.0 0.406 40.8 5.961
30.6 0.705 41.6 7.386
31.7 0.981 41.2 8.047
32.7 1.245    
Blurred answer
Students have asked these similar questions
An aluminum alloy bar with a rectangular cross section that has a width of 12.5 mm, thickness of 6.25 mm, and a gauge length of 50 mm was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.6. Using a spreadsheet program, obtain the following: a. A plot of the stress-strain relationship. Label the axes and show units. b. A plot of the linear portion of the stress-strain relationship. Determine the modulus of elasticity using the best fit approach. c. Proportional limit. d. Yield stress at an offset strain of 0.002 m/m. e. Tangent modulus at a stress of 450 MPa. f. Secant modulus at a stress of 450 MPa. TABLE P4.6 Load (kN) AL (mm) Load (kN) AL (mm) 33.5 1.486 3.3 0.025 35.3 2.189 14.0 0.115 37.8 3.390 25.0 0.220 39.8 4.829 29.0 0.406 40.8 5.961 30.6 0.705 41.6 7.386 31.7 0.981 41.2 8.047 32.7 1.245
A high-yield-strength alloy steel bar with a rectangular cross section that has a width of 37.5 mm, a thickness of 6.25 mm, and a gauge length of 203 mm was tested in tension to rupture, according to ASTM E-8 method. The load and deformation data were as shown in Table Using a spreadsheet program, obtain the following:a. A plot of the stress–strain relationship. Label the axes and show units.b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best-fit approach.c. Proportional limit.d. Yield stress.e. Ultimate strength.f. If the specimen is loaded to 155 kN only and then unloaded, what is the permanent deformation?g. In designing a typical structure made of this material, would you expect the stress applied in (f) safe? Why?
A round aluminum alloy bar with a 0.25-in. diameter and a 1-in. gauge length was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.8.Using a spreadsheet program, obtain the following: a. A plot of the stress–strain relationship. Label the axes and show units. b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best fit approach. c. Proportional limit. d. Yield stress at an offset strain of 0.002 in/in. e. Initial tangent modulus. f. If the specimen is loaded to 3200 lb only and then unloaded, what is the permanent change in gauge length? g. When the applied load was 1239 lb, the diameter was measured as 0.249814 in. Determine Poisson’s ratio.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY