Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.10QP
An aluminum alloy cylinder with a diameter of 3 in. and a height of 6 in. is subjected to a compressive load of 50,000 pounds. Assume that the material is within the elastic region and a modulus of elasticity of 11 × 106 psi.
a. What will be the lateral strain if Poisson’s ratio is 0.33?
b. What will be the diameter after load application?
c. What will be the height after load application?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An aluminum alloy cylinder with a diameter of 76 mm and a height of150 mm. is subjected to a compressive load of 220 kN. Assume that the material is within the elastic region and a modulus of elasticity of 75 GPa.a. What will be the lateral strain if Poisson’s ratio is 0.33?b. What will be the diameter after load application?c. What will be the height after load application?
An aluminum alloy cylinder with a diameter of 3 in. and a height of 6 in. is subjected to a compressive load of 50,000 pounds. Assume that the material is within the elastic region and a modulus of elasticity of 11 * 106 psi. a. What will be the lateral strain if Poisson’s ratio is 0.33? b. What will be the diameter after load application? c. What will be the height after load application?
An aluminum alloy rod has a circular cross section with a diameter of 8 mm. This rod is subjected to a tensile load of 4 kN. Assume that the material is within the elastic region and E = 69 GPa. a. What will be the lateral strain if Poisson’s ratio is 0.33? b. What will be the diameter after load application?
Chapter 4 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 4 - Name the two primary factors that make aluminum an...Ch. 4 - Prob. 4.2QPCh. 4 - An aluminum alloy specimen with a radius of 0.28...Ch. 4 - An aluminum alloy bar with a radius of 7 mm was...Ch. 4 - Decode the characteristics of a 6063 T831...Ch. 4 - A round aluminum alloy bar with a 0.6 in. diameter...Ch. 4 - An aluminum alloy bar with a rectangular cross...Ch. 4 - A round aluminum alloy bar with a 0.25-in....Ch. 4 - An aluminum alloy rod has a circular cross section...Ch. 4 - An aluminum alloy cylinder with a diameter of 3...
Ch. 4 - A 3003-H14 aluminum alloy rod with 0.5 in....Ch. 4 - The stressstrain relation of an aluminum alloy bar...Ch. 4 - An aluminum specimen originally 300 mm long is...Ch. 4 - A tension stress of 40 ksi was applied on a 12-in....Ch. 4 - A tension test was performed on an aluminum alloy...Ch. 4 - In Problem 4.15, plot the stressstrain...Ch. 4 - Referring to Figure 4.5, determine approximate...Ch. 4 - Prob. 4.18QPCh. 4 - A tensile stress is applied along the long axis of...Ch. 4 - A cylindrical aluminum alloy rod with a 0.5 in....Ch. 4 - Prob. 4.21QPCh. 4 - Discuss galvanic corrosion of aluminum. How can...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The data in Table 1.5.3 were obtained from a tensile test of a metal specimen with a rectangular cross section of 0.2011in.2 in area and a gage length (the length over which the elongation is measured) of 2.000 inches. The specimen was not loaded to failure. a. Generate a table of stress and strain values. b. Plot these values and draw a best-fit line to obtain a stress-strain curve. c. Determine the modulus of elasticity from the slope of the linear portion of the curve. d. Estimate the value of the proportional limit. e. Use the 0.2 offset method to determine the yield stress.arrow_forwardCompare the engineering and true secant elastic moduli for the natural rubber in Example Problem 6.2 at an engineering strain of 6.0. Assume that the deformation is all elastic.arrow_forwardA tensile test was performed on a metal specimen having a circular cross section with a diameter of 1 2 inch. The gage length (the length over which the elongation is measured) is 2 inches. For a load 13.5 kips, the elongation was 4.6610 3 inches. If the load is assumed to be within the linear elastic rang: of the material, determine the modulus of elasticity.arrow_forward
- asap please thank youarrow_forwardPart A An aluminum 2014-T4 alloy bar 2.50 inches wide and 0.750 inches in thickness has a 1/4 inch radius hole centered on its width, as shown in the sketch. With an axial load, P = 8650 lbs applied, the maximum axial stress at the edges of the hole was experimentally determined to be 7670 psi What is the stress concentration factor, K, of the hole? 1.33 0.75 1.66 1.50 P 2.50 in. -Radius 1/4 in. P= 8650 lbsarrow_forwardTesting a round steel alloy bar with a diameter of 15 mm and a gauge length of 250 mm produced the stress-strain relationship shown in Figure P3.28. Determine a. the elastic modulus b. the proportional limit c. the yield strength at a strain offset of 0.002 d. the tensile strength e. the magnitude of the load required to produce an increase in length of 0.38 mm f. the final deformation, if the specimen is unloaded after being strained by the amount specified in (e) g. In designing a typical structure made of this material, would you expect the stress applied in (e) reasonable? Why? 750 500 250 0.01 0.02 0.03 0.04 Strain, m/m FIGURE P3.28 Stress, MPaarrow_forward
- An aluminum alloy bar with a rectangular cross section that has a width of 12.5 mm, thickness of 6.25 mm, and a gauge length of 50 mm was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.6. Using a spreadsheet program, obtain the following: a. A plot of the stress-strain relationship. Label the axes and show units. b. A plot of the linear portion of the stress-strain relationship. Determine the modulus of elasticity using the best fit approach. c. Proportional limit. d. Yield stress at an offset strain of 0.002 m/m. e. Tangent modulus at a stress of 450 MPa. f. Secant modulus at a stress of 450 MPa. TABLE P4.6 Load (kN) AL (mm) Load (kN) AL (mm) 33.5 1.486 3.3 0.025 35.3 2.189 14.0 0.115 37.8 3.390 25.0 0.220 39.8 4.829 29.0 0.406 40.8 5.961 30.6 0.705 41.6 7.386 31.7 0.981 41.2 8.047 32.7 1.245arrow_forwardSolid mechanicsarrow_forward3. The distribution of stress in an aluminum machine component is given (in megapascals) by Ox = y + z? Oy = x + z Oz = 3x + y Txy = 3z2 Tyz = x Txz = %3D Calculate the state of strain at a point positioned at (1,2,4). Use E=70 GPa and v = 0.3arrow_forward
- A steel solid is subjected to following set of principal stresses: 01 = 300 MPa and o2 = 250 MPa. Assuming u = 0.25 and elasticity modulus as 2 x 10 MPa, calculate the strain energy per unit volume in N-mm. (Round off to 2 decimals places).arrow_forward2. A steel bar, whose cross section is 0.55 inch by 4.05 inches, was tested in tension. An axial load of P = 30,500 lb. produced a deformation of 0.105 inch over a gauge length of 2.05 inches and a decrease of 0.0075 inch in the 0.55-inch thickness of the bar. Determine the lateral strain. * Your answer Determine the axial strain. Your answer Determine the Poisson's ratio v. * Your answer Determine the decrease in the 4.05-in. cross-sectional dimension (in inches). * Your answerarrow_forwardThe shown figure represents the stress-strain relations of metals A and B during tension tests until fracture.Determine the following for the two metals (show all calculations and units):a. Proportional limitb. Yield stress at an offset strain of 0.002 in./in.c. Ultimate strengthd. Modulus of resiliencee. Toughnessf. Which metal is more ductile? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
How Cast Iron Pans Are Made — How to Make It; Author: Eater;https://www.youtube.com/watch?v=aIBt0uFwjY8;License: Standard Youtube License