Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.4QP
An aluminum alloy bar with a radius of 7 mm was subjected to tension until fracture and produced results shown in Table P4.4.
TABLE P4.4
Stress, MPa | Strain, 10−3 m/m | Stress, MPa | Strain, 10−3 m/m |
0 | 0.0 | 399.9 | 5.2 |
55.2 | 0.6 | 427.5 | 5.8 |
117.2 | 1.5 | 441.3 | 6.2 |
186.2 | 2.4 | 448.2 | 6.5 |
241.3 | 3.2 | 462.0 | 7.3 |
296.5 | 4.0 | 468.9 | 8.1 |
344.8 | 4.6 | 482.7 | 9.7 |
a. Using a spreadsheet program, plot the stress–strain relationship.
b. Calculate the modulus of elasticity of the aluminum alloy.
c. Determine the proportional limit.
d. What is the maximum load if the stress in the bar is not to exceed the proportional limit?
e. Determine the 0.2% offset yield strength.
f. Determine the tensile strength.
g. Determine the percent of elongation at failure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
S Figure P1.16 shows the stress-strain relations of metals A and B during ten-
sion tests until fracture. Determine the following for the two metals (show all
calculations and units):
a. Proportional limit
b. Yield stress at an offset strain of 0.002 m/m.
c. Ultimate strength
d. Modulus of resilience
e. Toughness
f. Which metal is more ductile? Why?
900
Metal A
600
Metal B
300
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Strain, m/m
FIGURE P1.16
Stress, MPa
Please answer letters a, b, c and d. Thank you!
A round steel alloy bar with a diameter of 19 mm and a gauge length of 76 mm
was subjected to tension, with the results shown in Table P3.26. Using a
computer spreadsheet program, plot the stress-strain relationship. From the
graph, determine the Young's modulus of the steel alloy and the deformation
corresponding to a 37 kN load.
TABLE P3.26
Deformation,
Load, kN
mm
9
0.0286
18
0.0572
27
0.0859
36
0.1145
45
0.1431
54
0.1718
Chapter 4 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 4 - Name the two primary factors that make aluminum an...Ch. 4 - Prob. 4.2QPCh. 4 - An aluminum alloy specimen with a radius of 0.28...Ch. 4 - An aluminum alloy bar with a radius of 7 mm was...Ch. 4 - Decode the characteristics of a 6063 T831...Ch. 4 - A round aluminum alloy bar with a 0.6 in. diameter...Ch. 4 - An aluminum alloy bar with a rectangular cross...Ch. 4 - A round aluminum alloy bar with a 0.25-in....Ch. 4 - An aluminum alloy rod has a circular cross section...Ch. 4 - An aluminum alloy cylinder with a diameter of 3...
Ch. 4 - A 3003-H14 aluminum alloy rod with 0.5 in....Ch. 4 - The stressstrain relation of an aluminum alloy bar...Ch. 4 - An aluminum specimen originally 300 mm long is...Ch. 4 - A tension stress of 40 ksi was applied on a 12-in....Ch. 4 - A tension test was performed on an aluminum alloy...Ch. 4 - In Problem 4.15, plot the stressstrain...Ch. 4 - Referring to Figure 4.5, determine approximate...Ch. 4 - Prob. 4.18QPCh. 4 - A tensile stress is applied along the long axis of...Ch. 4 - A cylindrical aluminum alloy rod with a 0.5 in....Ch. 4 - Prob. 4.21QPCh. 4 - Discuss galvanic corrosion of aluminum. How can...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.17 Figure P1.17 shows the stress-strain relations of metals A and B during tension tests until fracture. Determine the following for the two metals (show all calcu- lations and units): a. Proportional limit b. Yield stress at an offset strain of 0.002 in./in. 150 - - Metal A 100 • Metal B 50 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Strain, in./in. FIGURE P1.17 c. Ultimate strength d. Modulus of resilience e. Toughness f. Which metal is more ductile? Why? Stress, ksiarrow_forwardFigure P1.16 shows the stress–strain relations of metals A and B during tension tests until fracture. Determine the following for the two metals (show all calculations and units): Proportional limit Yield stress at an offset strain of 0.002 in./in. Ultimate strength Modulus of resilience Toughness Which metal is more ductile? Why?arrow_forwardData taken from a stress-strain test for a brittle alloy are given in the table. The curve is linear between the origin and the first point. o (ksi) e (in./in.) 0 0 44.8 0.0008 54.0 0.0013 57.5 0.0017 59.5 0.0021 60.0 0.0023 Part A Determine approximately the modulus of toughness. The rupture stress is o, 30.0 ksi. Express your answer in inch-pounds per cubic inch as an integer. VAE Ivec U Submit Provide Feedback Request Answer in-lb/in³arrow_forward
- 1. The following data were obtained during a tension test of an aluminum alloy. The initial diameter of the test specimen was 0.505 in., and the gage length was 2.0 in. Load ( Ib) Elongation (in.) Load ( Ib) Elongation (in.) 14000 0.020 2310 0.0022 14400 0.025 4640 0.0044 14 500 0.060 6950 0.0066 14600 0.080 9290 0.0088 14800 0.100 I1 600 0.0110 14600 0.120 13000 0.01 50 13600 Fracture Plot the stress-strain diagram and determine the following mechanical properties: a. proportional limit þ. modulus of elasticity S. vield stress at 0.2% offset d. ultimate stress e. nominal rupture stress.arrow_forwardAn aluminum alloy bar with a radius of 7 mm was subjected to tension until fracture and produced results shown in Table P4.3. a. Using a spreadsheet program, plot the stress–strain relationship. b. Calculate the modulus of elasticity of the aluminum alloy. c. Determine the proportional limit. d. What is the maximum load if the stress in the bar is not to exceed the proportional limit? e. Determine the 0.2% offset yield strength. f. Determine the tensile strength. g. Determine the percent of elongation at failure.arrow_forwardData taken from a stress-strain test for a brittle alloy are given in the table. The curve is linear between the origin and the first point o (ksi) e (in. /in.) 0 0 34.3 0.0008 43.5 0.0013 47.0 0.0017 49.0 0.0021 49.5 0.0023 Part A Determine approximately the modulus of toughness The rupture stress is a, - 300 ksi Express your answer in inch-pounds per cubic inch as an integer. Η ΑΣΦ/ 1410.495 vec Submit Previous Answers Request Answer * Incorrect; Try Again; 3 attempts remaining ? in-lb/in³arrow_forward
- 3. The distribution of stress in an aluminum machine component is given (in megapascals) by Ox = y + z? Oy = x + z Oz = 3x + y Txy = 3z2 Tyz = x Txz = %3D Calculate the state of strain at a point positioned at (1,2,4). Use E=70 GPa and v = 0.3arrow_forwardThe stress-strain diagram for a steel alloy having an original diameter of 0.5 in. and a gage length of 2 in. is given in the figure. If the specimen is loaded until it is stressed to 70 ksi, determine the approximate amount of elastic recovery and the increase in the gage length after it is unloaded. o (ksi) 80 70 60 50 40 30 20 10 e (in./in.) 0 04 0.08 0.12 0.16 0.20 0.24 0.28 0 0005 0.0010.0015 0.002 0.0025 0.0030.0035arrow_forwardIf the yield stress in part c is considered failure stress, what is the maximumworking stress to be applied to this material if a factor of safety of 1.5 is used?arrow_forward
- Figure shows the stress–strain relations of metals A and B during tension tests until fracture. Determine the following for the two metals (show all calculations and units): - Proportional limit- Yield stress at an offset strain of 0.002 in./in.- Ultimate strength- Modulus of resilience- Toughness- Which metal is more ductile? Why?arrow_forwardThe stress–strain relation shown in Figure was obtained during the tensile test of an aluminum alloy specimen. Determine the Yield stress using an offset of 0.002 strain.arrow_forwardQ2c) Listed in the table below is the tensile stress-strain data for different grades of steels. Utilizing the data given answer the three queries given below. Material Yield Tensile Strain at Fracture Elastic StrengthStrengthFractureStrengthModulus (MPa) (MPa) (MPa) (GPa) A 410 1440 0.63 265 410 В 200 220 0.40 105 250 C 815 950 0.25 500 610 D 800 650 0.14 720 210 E Fractures before yielding 650 550 1) Which will experience the greatest percent reduction in area? Why? 2) Which is the strongest? Why? 3) Which is the stiffest? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
How Cast Iron Pans Are Made — How to Make It; Author: Eater;https://www.youtube.com/watch?v=aIBt0uFwjY8;License: Standard Youtube License