steel having a diameter of 12.8 mm (0.505 in.) and a gauge length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics shown in the following table: (see attached picture) (a) Plot the data as engineering stress versus engineering strain. (b) Compute the modulus of elasticity. (c) Determine the yield strength at a strain offset of 0.002. (d) Determine the tensile strength of this alloy. e) What is the approximate ductility, in percent elongation?
steel having a diameter of 12.8 mm (0.505 in.) and a gauge length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics shown in the following table: (see attached picture) (a) Plot the data as engineering stress versus engineering strain. (b) Compute the modulus of elasticity. (c) Determine the yield strength at a strain offset of 0.002. (d) Determine the tensile strength of this alloy. e) What is the approximate ductility, in percent elongation?
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
A cylindrical specimen of stainless steel having a diameter of 12.8 mm (0.505 in.) and a gauge length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics shown in the
following table:
(see attached picture)
(a) Plot the data as engineering stress versus engineering strain.
(b) Compute the modulus of elasticity.
(c) Determine the yield strength at a strain offset of 0.002.
(d) Determine the tensile strength of this alloy.
e) What is the approximate ductility, in percent elongation?
(f) Compute the modulus of resilience.

Transcribed Image Text:Load
Length
Ib,
mm
tn.
50.800
2.000
12,700
2,850
50.825
2.001
25,400
5,710
50.851
2.002
38,100
8,560
50.876
2.003
50,800
11,400
50.902
2.004
76,200
17.100
50.952
2.006
89,100
20,000
51.003
2.008
92,700
20,800
51.054
2.010
102,500
23,000
51.181
2.015
107,800
24,200
51.308
2.020
119,400
26,800
51.562
2.030
128,300
28,800
51.816
2.040
149,700
33,650
52.832
2.080
159,000
35,750
53.848
2.120
160,400
36,000
54.356
2.140
159,500
35,850
54.864
2.160
151.500
34.050
55.880
2.200
124,700
28,000
56.642
2.230
Fracture
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning