cylindrical specimen of stainless steel having a diameter of 12.8 mm (0.505 in.) and a gauge  length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics  shown in the following table to answer the following:  a. Plot the data as engineering stress versus engineering strain.  b. Compute the modulus of elasticity.  66  c. Determine the yield strength at a strain offset of 0.002.  d. Determine the tensile strength of this alloy.  e. What is the approximate ductility, in percent elongation?  f. Compute the modulus of resilience

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

A cylindrical specimen of stainless steel having a diameter of 12.8 mm (0.505 in.) and a gauge 
length of 50.800 mm (2.000 in.) is pulled in tension. Use the load–elongation characteristics 
shown in the following table to answer the following: 
a. Plot the data as engineering stress versus engineering strain. 
b. Compute the modulus of elasticity. 
66 
c. Determine the yield strength at a strain offset of 0.002. 
d. Determine the tensile strength of this alloy. 
e. What is the approximate ductility, in percent elongation? 
f. Compute the modulus of resilience

N
0
12,700
25,400
38,100
50,800
76,200
89,100
92,700
102,500
107,800
119,400
128,300
149,700
159,000
160,400
159,500
151,500
124,700
Load
lbj
0
2,850
5,710
8,560
11,400
17,100
20,000
20,800
23,000
24,200
26,800
28,800
33,650
35,750
36,000
35,850
34,050
28,000
Fracture
Length
mm
50.800
50.825
50.851
50.876
50.902
50.952
51.003
51.054
51.181
51.308
51.562
51.816
52.832
53.848
54.356
54.864
55.880
56.642
in.
2.000
2.001
2.002
2.003
2.004
2.006
2.008
2.010
2.015
2.020
2.030
2.040
2.080
2.120
2.140
2.160
2.200
2.230
Transcribed Image Text:N 0 12,700 25,400 38,100 50,800 76,200 89,100 92,700 102,500 107,800 119,400 128,300 149,700 159,000 160,400 159,500 151,500 124,700 Load lbj 0 2,850 5,710 8,560 11,400 17,100 20,000 20,800 23,000 24,200 26,800 28,800 33,650 35,750 36,000 35,850 34,050 28,000 Fracture Length mm 50.800 50.825 50.851 50.876 50.902 50.952 51.003 51.054 51.181 51.308 51.562 51.816 52.832 53.848 54.356 54.864 55.880 56.642 in. 2.000 2.001 2.002 2.003 2.004 2.006 2.008 2.010 2.015 2.020 2.030 2.040 2.080 2.120 2.140 2.160 2.200 2.230
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Properties of materials
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning