Concept explainers
The Norton and Thevenin equivalent networks from node
Answer to Problem 3.71HP
The Thevenin equivalent Network is shown in Figure 6 and the Norton equivalent network is shown in Figure 4
Explanation of Solution
Calculation:
The given diagram is shown in Figure 1
To determine the Norton equivalent, short circuit the output terminals, Mark the values, current direction, and redraw the circuit.
The required diagram is shown in Figure 2
Apply KVL to the first loop.
Apply KVL to the second loop.
The equation for the Norton current is given by,
Substitute
To obtain the Norton resistance of the circuit, short circuit the voltage source, open circuit the current source and redraw the circuit.
The required diagram is shown in Figure 3
Form the above circuit the Norton impedance of the circuit is calculated as,
Substitute
Mark the values and draw the Norton equivalent circuit.
The required diagram is shown in Figure 4
To calculate the Thevenin voltage, remove the load resistance and redraw the circuit.
The required diagram is shown in Figure 5
From the above circuit the value of the current
Substitute
The expression for the value of the current
Substitute
The expression for the voltage across the resistor
Substitute
The expression for the voltage across the resistor
Substitute
From Figure (5), the expression for the Thevenin voltage is given by,
Substitute
The Thevenin and the Norton resistance of the circuit are equal, thus the expression for the Thevenin resistance is given by,
Substitute
Mark the values and draw the Thevenin equivalent of the circuit.
The required diagram is shown in Figure 6
Conclusion:
Therefore, the Thevenin equivalent Network is shown in Figure 6 and the Norton equivalent network is shown in Figure 4
Want to see more full solutions like this?
Chapter 3 Solutions
Principles and Applications of Electrical Engineering
- I need expert handwritten solutionsarrow_forwardShow handwriting solutions not Aiarrow_forwardMaul Dulde Questio119 819 PREV NEXT In the lab, you have setup a thermocouple and have used a thermistor along with an ice bath and water at various temperatures (confirmed with the thermistor) up to 100 degrees Celsius for calibration. The calibration data is shown in the table below and the full-scale output range is 0-5 mV. You note that there is scatter in your data; however, you must use a linear curve fit to efficiently process the measurements during an automated temperature measurement process. Question 1 100% Question 2 100% Question 3 100% Question 4 100% Question 5 100% Question 6 100% mV The slope of your linear calibration curve for the thermocouple is 0.0334 °C with an offset of -0.07 mV. Question 7 100% Question 8 100% What is the maximum expected linearity error as a percentage of the full-scale output? Question 9 0% Summary -0.08 Thermocouple Calibration Data Temperature (°C) Voltage (in mV) 0 20 20 40 40 60 60 60 80 96 90 0.587 1.314 1.901 2.528 2.782 100 3.055 LIT…arrow_forward
- Only expert should solve itarrow_forwardWhat is the high cutoff frequency? What is the low cutoff frequency? What is the bandwidth?arrow_forwardNeed handwritten pen and paper solution do not use chatgpt or AI otherwise downvote. An AC motor with impedance Z₁ = 4.2 + j3.6 ohm is supplied from a source of 220 V at 60 Hz. Find: a) pf, P and Q, b) Determine the capacitor required to connect in parallel with the motor so that the power factor is corrected and equal to 0.98 behind.arrow_forward
- Need handwritten pen and paper solution do not use chatgpt or AI otherwise downvote An AC motor with impedance Z₁ = 4.2 + j3.6 ohm is supplied from a source of 220 V at 60 Hz. Find: a) pf, P and Q, b) Determine the capacitor required to connect in parallel with the motor so that the power factor is corrected and equal to 0.98 behind.arrow_forwardFind;- magnitude of line voltages Line currents Verify that th eload is balanced, i.e In = 0arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Don't use ai to answer I will report you answerarrow_forward(b) Below is a FSM with a 1-bit input A, and a 1-bit output Y. Deter- mine the combined state and output table. Identify the unreachable states, and sketch the state-transition diagram. In your table and diagram, use Os and 1s for the states and next states, not symbols like S0, S1, etc. A D D D CLK S'₁₂ S2 S₁₁ S1 Y S' r So S2 S₁ So resetarrow_forwardDo by pen and paper not using chatgpt Determine the output current of E1 in the circuit shown in . The voltage drop of the diodes is 0.7 V.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,