
Chemistry 2012 Student Edition (hard Cover) Grade 11
12th Edition
ISBN: 9780132525763
Author: Prentice Hall
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 22.1, Problem 13LC
Interpretation Introduction
Interpretation: The
Concept introduction: A saturated hydrocarbon that involves the acyclic arrangement of carbon atoms is known as an alkane. Examples of alkanes are methane, propane, butane, and many more.
Expert Solution & Answer

Answer to Problem 13LC
Alkanes are characterized as non-polar molecules based on their bond polarity.
Explanation of Solution
Alkanes involve the presence of only two kinds of elements, namely carbon and hydrogen. Carbon-hydrogen bonds are non-polar due to the very low polarity difference between carbon and hydrogen atoms. Carbon-carbon bonds are non-polar. Hence, alkanes are non-polar molecules.
Conclusion
As per the bond polarity, alkanes are non-polar molecules.
Chapter 22 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
Ch. 22.1 - Prob. 1SPCh. 22.1 - Prob. 2SPCh. 22.1 - Prob. 3SPCh. 22.1 - Prob. 4SPCh. 22.1 - Prob. 5SPCh. 22.1 - Prob. 6SPCh. 22.1 - Prob. 7LCCh. 22.1 - Prob. 8LCCh. 22.1 - Prob. 9LCCh. 22.1 - Prob. 10LC
Ch. 22.1 - Prob. 11LCCh. 22.1 - Prob. 12LCCh. 22.1 - Prob. 13LCCh. 22.2 - Prob. 14LCCh. 22.2 - Prob. 15LCCh. 22.2 - Prob. 16LCCh. 22.2 - Prob. 17LCCh. 22.2 - Prob. 18LCCh. 22.3 - Prob. 19SPCh. 22.3 - Prob. 20SPCh. 22.3 - Prob. 21LCCh. 22.3 - Prob. 22LCCh. 22.3 - Prob. 23LCCh. 22.3 - Prob. 24LCCh. 22.3 - Prob. 25LCCh. 22.3 - Prob. 26LCCh. 22.3 - Prob. 27LCCh. 22.4 - Prob. 28LCCh. 22.4 - Prob. 29LCCh. 22.4 - Prob. 30LCCh. 22.4 - Prob. 31LCCh. 22.4 - Prob. 32LCCh. 22.5 - Prob. 33LCCh. 22.5 - Prob. 34LCCh. 22.5 - Prob. 35LCCh. 22.5 - Prob. 36LCCh. 22.5 - Prob. 37LCCh. 22.5 - Prob. 38LCCh. 22.5 - Prob. 39LCCh. 22.5 - Prob. 40LCCh. 22 - Prob. 41ACh. 22 - Prob. 42ACh. 22 - Prob. 43ACh. 22 - Prob. 44ACh. 22 - Prob. 45ACh. 22 - Prob. 46ACh. 22 - Prob. 47ACh. 22 - Prob. 48ACh. 22 - Prob. 49ACh. 22 - Prob. 50ACh. 22 - Prob. 51ACh. 22 - Prob. 52ACh. 22 - Prob. 53ACh. 22 - Prob. 54ACh. 22 - Prob. 55ACh. 22 - Prob. 56ACh. 22 - Prob. 57ACh. 22 - Prob. 58ACh. 22 - Prob. 59ACh. 22 - Prob. 60ACh. 22 - Prob. 61ACh. 22 - Prob. 62ACh. 22 - Prob. 63ACh. 22 - Prob. 64ACh. 22 - Prob. 65ACh. 22 - Prob. 66ACh. 22 - Prob. 67ACh. 22 - Prob. 68ACh. 22 - Prob. 69ACh. 22 - Prob. 70ACh. 22 - Prob. 71ACh. 22 - Prob. 72ACh. 22 - Prob. 73ACh. 22 - Prob. 74ACh. 22 - Prob. 75ACh. 22 - Prob. 76ACh. 22 - Prob. 77ACh. 22 - Prob. 78ACh. 22 - Prob. 79ACh. 22 - Prob. 80ACh. 22 - Prob. 81ACh. 22 - Prob. 82ACh. 22 - Prob. 84ACh. 22 - Prob. 85ACh. 22 - Prob. 86ACh. 22 - Prob. 87ACh. 22 - Prob. 89ACh. 22 - Prob. 90ACh. 22 - Prob. 91ACh. 22 - Prob. 92ACh. 22 - Prob. 93ACh. 22 - Prob. 94ACh. 22 - Prob. 95ACh. 22 - Prob. 96ACh. 22 - Prob. 97ACh. 22 - Prob. 98ACh. 22 - Prob. 99ACh. 22 - Prob. 100ACh. 22 - Prob. 101ACh. 22 - Prob. 102ACh. 22 - Prob. 103ACh. 22 - Prob. 104ACh. 22 - Prob. 105ACh. 22 - Prob. 106ACh. 22 - Prob. 107ACh. 22 - Prob. 108ACh. 22 - Prob. 109ACh. 22 - Prob. 110ACh. 22 - Prob. 111ACh. 22 - Prob. 1STPCh. 22 - Prob. 2STPCh. 22 - Prob. 3STPCh. 22 - Prob. 4STPCh. 22 - Prob. 5STPCh. 22 - Prob. 6STPCh. 22 - Prob. 7STPCh. 22 - Prob. 8STPCh. 22 - Prob. 9STPCh. 22 - Prob. 10STPCh. 22 - Prob. 11STPCh. 22 - Prob. 12STPCh. 22 - Prob. 13STPCh. 22 - Prob. 14STPCh. 22 - Prob. 15STPCh. 22 - Prob. 16STP
Knowledge Booster
Similar questions
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Priva ×arrow_forwardPredict the products of this organic reaction: Explanation Check IN NaBH3CN H+ ? Click and drag to start drawing a structure. D 5 C +arrow_forwardPredict the products of this organic reaction: H3O+ + ? • Draw all the reasonable products in the drawing area below. If there are no products, because no reaction will occur, check the box under the drawing area. • Include both major and minor products, if some of the products will be more common than others. • Be sure to use wedge and dash bonds if you need to distinguish between enantiomers. No reaction. Click and drag to start drawing a structure. dmarrow_forward
- Iarrow_forwardDraw the anti-Markovnikov product of the hydration of this alkene. this problem. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for esc esc ☐ Explanation Check F1 1 2 F2 # 3 F3 + $ 14 × 1. BH THE BH3 2. H O NaOH '2 2' Click and drag to start drawing a structure. F4 Q W E R A S D % 905 LL F5 F6 F7 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility < & 6 7 27 8 T Y U G H I F8 F9 F10 F11 F12 9 0 J K L P + // command option Z X C V B N M H H rol option commandarrow_forwardAG/F-2° V 3. Before proceeding with this problem you may want to glance at p. 466 of your textbook where various oxo-phosphorus derivatives and their oxidation states are summarized. Shown below are Latimer diagrams for phosphorus at pH values at 0 and 14: -0.93 +0.38 -0.50 -0.51 -0.06 H3PO4 →H4P206 →H3PO3 →→H3PO₂ → P → PH3 Acidic solution Basic solution -0.28 -0.50 3--1.12 -1.57 -2.05 -0.89 PO HPO H₂PO₂ →P → PH3 -1.73 a) Under acidic conditions, H3PO4 can be reduced into H3PO3 directly (-0.28V), or via the formation and reduction of H4P206 (-0.93/+0.38V). Calculate the values of AG's for both processes; comment. (3 points) 0.5 PH P 0.0 -0.5 -1.0- -1.5- -2.0 H.PO, -2.3+ -3 -2 -1 1 2 3 2 H,PO, b) Frost diagram for phosphorus under acidic conditions is shown. Identify possible disproportionation and comproportionation processes; write out chemical equations describing them. (2 points) H,PO 4 S Oxidation stale, Narrow_forward
- 4. For the following complexes, draw the structures and give a d-electron count of the metal: a) Tris(acetylacetonato)iron(III) b) Hexabromoplatinate(2-) c) Potassium diamminetetrabromocobaltate(III) (6 points)arrow_forward2. Calculate the overall formation constant for [Fe(CN)6]³, given that the overall formation constant for [Fe(CN)6] 4 is ~1032, and that: Fe3+ (aq) + e = Fe²+ (aq) E° = +0.77 V [Fe(CN)6]³ (aq) + e¯ = [Fe(CN)6] (aq) E° = +0.36 V (4 points)arrow_forward5. Consider the compounds shown below as ligands in coordination chemistry and identify their denticity; comment on their ability to form chelate complexes. (6 points) N N A B N N N IN N Carrow_forward
- 1. Use standard reduction potentials to rationalize quantitatively why: (6 points) (a) Al liberates H2 from dilute HCl, but Ag does not; (b) Cl2 liberates Br2 from aqueous KBr solution, but does not liberate C12 from aqueous KCl solution; c) a method of growing Ag crystals is to immerse a zinc foil in an aqueous solution of AgNO3.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 3 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? N N H3O+ +R + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. fmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY