ORGANIC CHEMISTRY-PRINT MULTI TERM
ORGANIC CHEMISTRY-PRINT MULTI TERM
4th Edition
ISBN: 9781119832614
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 22, Problem 45PP

(a)

Interpretation Introduction

Interpretation: Using a different type of reactions, 1-hexanol is to be prepared from hexyl amine, heptyl amine and pentyl amine

Concept Introduction: A number of transformations are used to prepare 1-hexanol.  Some of them are listed as follows:

  1. a) Alcohol on treatment with phosphorous tribromide gives alkyl bromide
  2. b) Alkyl bromide in azide synthesis produces primary amine
  3. c) Alkyl halide on treatment with sodium cyanide gives alkyl cyanide
  4. d) Cyanide on reduction gives alkyl amine with an increment of one carbon atom skeleton
  5. e) Alkene on ozonolysis produces carbonyl compounds
  6. f) Alkyl halides with strong base gives alkene
  7. g) Sodium cyanoborohydride is a strong reducing agent than sodium borohydride.  It reduces the carbonyl group into amine group in a rapid way.  So, it is called as reductive amination reactions.  Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.

ORGANIC CHEMISTRY-PRINT MULTI TERM, Chapter 22, Problem 45PP , additional homework tip  1

Using these concepts, we can transfer 1-hexanol into the given compounds.

(b)

Interpretation Introduction

Interpretation: Using a different type of reactions, 1-hexanol is to be prepared from hexyl amine, heptyl amine and pentyl amine

Concept Introduction: A number of transformations are used to prepare 1-hexanol.  Some of them are listed as follows:

  1. a) Alcohol on treatment with phosphorous tribromide gives alkyl bromide
  2. b) Alkyl bromide in azide synthesis produces primary amine
  3. c) Alkyl halide on treatment with sodium cyanide gives alkyl cyanide
  4. d) Cyanide on reduction gives alkyl amine with an increment of one carbon atom skeleton
  5. e) Alkene on ozonolysis produces carbonyl compounds
  6. f) Alkyl halides with strong base gives alkene
  7. g) Sodium cyanoborohydride is a strong reducing agent than sodium borohydride.  It reduces the carbonyl group into amine group in a rapid way.  So, it is called as reductive amination reactions.  Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.

ORGANIC CHEMISTRY-PRINT MULTI TERM, Chapter 22, Problem 45PP , additional homework tip  2

Using these concepts, we can transfer 1-hexanol into the given compounds.

(c)

Interpretation Introduction

Interpretation: Using a different type of reactions, 1-hexanol is to be prepared from hexyl amine, heptyl amine and pentyl amine

Concept Introduction: A number of transformations are used to prepare 1-hexanol.  Some of them are listed as follows:

  1. a) Alcohol on treatment with phosphorous tribromide gives alkyl bromide
  2. b) Alkyl bromide in azide synthesis produces primary amine
  3. c) Alkyl halide on treatment with sodium cyanide gives alkyl cyanide
  4. d) Cyanide on reduction gives alkyl amine with an increment of one carbon atom skeleton
  5. e) Alkene on ozonolysis produces carbonyl compounds
  6. f) Alkyl halides with strong base gives alkene
  7. g) Sodium cyanoborohydride is a strong reducing agent than sodium borohydride.  It reduces the carbonyl group into amine group in a rapid way.  So, it is called as reductive amination reactions.  Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.

ORGANIC CHEMISTRY-PRINT MULTI TERM, Chapter 22, Problem 45PP , additional homework tip  3

Using these concepts, we can transfer 1-hexanol into the given compounds.

Blurred answer
Students have asked these similar questions
Part VII. Below are the 'HNMR, 13 C-NMR, COSY 2D- NMR, and HSQC 2D-NMR (similar with HETCOR but axes are reversed) spectra of an organic compound with molecular formula C6H1003 - Assign chemical shift values to the H and c atoms of the compound. Find the structure. Show complete solutions. Predicted 1H NMR Spectrum 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 f1 (ppm) Predicted 13C NMR Spectrum 100 f1 (ppm) 30 220 210 200 190 180 170 160 150 140 130 120 110 90 80 70 -26 60 50 40 46 30 20 115 10 1.0 0.9 0.8 0 -10
Q: Arrange BCC and Fec metals, in sequence from the Fable (Dr. R's slides) and Calculate Volume and Density. Aa BCC V 52 5 SFCC
None

Chapter 22 Solutions

ORGANIC CHEMISTRY-PRINT MULTI TERM

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY