Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.26P
At a given instant of time, the temperature distribution within an infinite homogeneous body is given by the function
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The initial temperature of a 50 cm long silver wire is 50 °C. The circumference of the wire in question is completely insulated, but both ends are kept at a temperature of 0 °C (zero degrees Celsius). Obtain the heat conduction along the wire as a function of time and position and, taking a single term in the solution, determine how many degrees Celsius the temperature in the middle of the rod will be after 7 minutes. (For silver wire, α=1.70 cm2/s.)
The time evolution of the temperature of an object follows the Newton's cooling laws
dT
dx
=
-k(T - Ts),
where the term k = 2.2 (1/s) is the heat transfer constant, and Tg = 25.6° C is the ambient temperature.
The initial temperature of the object at time t = = 0 is T(t = 0) = 200°C.
°C
Use the Euler's method, and a time step of h=0.2s, calculate:
When t = = 0.2s, T =
°C
When t 1s, T =
You are asked to estimate the maximum human body temperature if the metabolic
heat produced in your body could escape only by tissue conduction and later on the surface by
convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in
radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when
the temperature only depends on the radial coordinater from the centerline. The governing
dT
+q""=0
dr
equation is written as
1 d
k-
r dr
r = 0,
dT
dr
=0
dT
r=ro -k -=h(T-T)
dr
(k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the
skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat
generation rate in the body (W/m³) and is defined as heat generated per unit volume per second.
The 1-D (radial) temperature distribution can be derived as:
T(r) =
q"¹'r² qr qr.
+
4k 2h
+
4k
+T
, where k is thermal conductivity of tissue
air
(A) q" can be calculated…
Chapter 2 Solutions
Introduction to Heat Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r1 has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - Prob. 2.9PCh. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Which formula is used to calculate the heat conduction in the AXIAL direction in a vertically located pipe segment whose inner and outer surfaces are perfectly insulated. Here r, is inner radius, r, outer radius, Tri pipe inner surface temperature, Tro pipe outer surface temperature, L is the length of the pipe, T the temperature on the lower surface, Ty the temperature on upper surface. Tu r; Tro rarrow_forward3.4 Estimate the rate of heat loss due to radiation from a covered pot of water at 95 ° C. How does this compare with the 60 W that is lost due only to convection and conduction losses? What amount of energy input would be needed to maintain the water at its boiling point for 30 minutes? The polished stainless steel pot is cylindrical, 20 cm in diameter and 14 cm high, with a tight-fitting flat cover. The air temperature in the kitchen is about 25 ° C. State any assumptions you make in deriving your estimatesarrow_forwardPlease do it correctlyarrow_forward
- Hello, I am a mechanical engineering student and want to upload this question as I have an exam in early June about thermodynamics. I have been given a question that will help me answer my exams in June. Please could you answer showing step by step guidance on how to answer this question with the formula clearly shown. Thank you very mucharrow_forwardFind the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are ρ =1200 kg/m 3, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux q =1000 W/m 2 is applied to the upper surface. The right and left surfaces are also kept at 0oC. Bottom surface is insulated.arrow_forwardIn this question, we are concerned with the evolution of the temperature u(x, t) in a homogeneous thin heat conducting rod of length L = 1. We can consider that the rod is laterally insulated as to have a one-dimensional problem. The evolution of the temperature is governed by the one-dimensional heat equation ди 0 0 = K Ət Əx2' Assume that this equation is subject to the following initial conditions u(x,0) = f(x) and boundary conditions (0, t) = 0 and ди (1,t) + и(1,t) — 0 (i) Discuss briefly the physical meaning of the boundary conditions.arrow_forward
- Two large containers A and B of the same size are filled with different fluids. The fluids in containers A and B are maintained at 0° C and 100° C, respectively. A small metal bar, whose initial temperature is 100° C, is lowered into container A. After 1 minute the temperature of the bar is 90° C. After 2 minutes the bar is removed and instantly transferred to the other container. What is the temperature of the bar at the instant it is transferred?arrow_forward= Consider a large plane wall of thickness L=0.3 m, thermal conductivity k = 2.5 W/m.K, and surface area A = 12 m². The left side of the wall at x=0 is subjected to a net heat flux of ɖo = 700 W/m² while the temperature at that surface is measured to be T₁ = 80°C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary equations for steady one- dimensional heat conduction through the wall, (b) obtain a relation for the variation of the temperature in the wall by solving the differential equation, and (c) evaluate the temperature of the right surface of the wall at x=L. Ti до L Xarrow_forward2. A slab of thickness Lis initially at zero temperature. For times t> 0, the boundary surface at x 0 is subjected to a time-dependent prescribed temperature f(t) defined by: a + bt for 0Ti and the boundary at x = L is kept insulated. Using Duhamel's theorem, develop an expression for the temperature distribution in the slab for times (i) t t1.arrow_forward
- How long should it take to boil an egg? Model the egg as a sphere with radius of 2.3 cm that has properties similar to water with a density of = 1000 kg/m3 and thermal conductivity of k = 0.606 Watts/(mC) and specific heat of c = 4182 J/(kg C). Suppose that an egg is fully cooked when the temperature at the center reaches 70 C. Initially the egg is taken out of the fridge at 4 C and placed in the boiling water at 100 C. Since the egg shell is very thin assume that it quickly reaches a temperature of 100 C. The protein in the egg effectively immobilizes the water so the heat conduction is purely conduction (no convection). Plot the temperature of the egg over time and use the data tooltip in MATLAB to make your conclusion on the time it takes to cook the egg in minutes.arrow_forwardFind the temperature of a rod 0 < x < 1 thermally insulated along the surface, if heat sources of density equal to (t) sin (7) are continuously distributed over the rod, and the initial temperature of the rod is an arbitrary function f(x) and the temperature of the ends is maintained equal to zero.arrow_forwardplease provide answers with step-by-step calculations and explanationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
BEARINGS BASICS and Bearing Life for Mechanical Design in 10 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=aU4CVZo3wgk;License: Standard Youtube License