Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.18P
(a)
To determine
The explanation behind the incorrect measurement from apparatus in aerogel’s conductivity.
(b)
To determine
The thermal conductivity of aerogel.
(c)
To determine
The temperature difference and comment on importance of knowledge of axial location to measure temperature.
(d)
To determine
The outlet temperature of water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I have a problem similar to this in my case the problem is from the outside in. the heat is entering the interior and I don't know what temperature it will have inside since part of the heat will be lost in the thickness of the cylinder, I want to know how to fix the formula so that I can obtain the temperature inside the cylinder.
Example 2.10
Consider a 25 mm x 25 mm x 1 mm thick silicon die attached to a same size 2
mm-thick copper cap through a 0.1 mm thick thermal interface material (TIM)
as shown in Figure 2.1. Convection heat transfer coefficient on the top side of
the copper cap is 2500 W/m²°C. If thermal conductivity of silicon, copper, and
thermal interface material are 125, 390, and 5 W/m°C, respectively, what is the
total thermal resistance from the active (bottom) side of the silicon die to outside
ambient?
Mica sheet of 0.15 m diameter and has thickness of 0.005m is subjected to heater with a supply of 28W power. Cold water is circulated around the specimen with a temperature of 30°C; calculate the thermal conductivity of the specimen?
Chapter 2 Solutions
Introduction to Heat Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r1 has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - Prob. 2.9PCh. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please provide Handwritten answerarrow_forwardDefine the thermal conductivities of some materials at room conditionsarrow_forwardcomposite protective wall is formed of a 1 in copper plate, a 1/8 in layer of asbestos, a 2 in layer of fiberglass. The thermal conductivities of the materials in units of BTU/hr-ft-F are 240, 0.048 and 0.022 respectively. The overall temperature difference across the wall is 500 F. Calculate the heat transfer per unit area through the composite structure.arrow_forward
- 1. A wall 2 cm thick is to be constructed from material that has an average thermal conductivity of 1.3 W/m C. The wall is to be insulated with material having an average thermal conductivity of 0.35 W/m C, so that the heat loss per square meter will not exceed 1830 W. Assuming that the inner and outer surface temperatures of the insulated wall are 1300 and 30 C, calculate the thickness of insulation required.arrow_forwardIn Problem 1.32, if the rod is snugly fitted against two immovable nonconducting walls at a temperature of 15°C and then heated uniformly to115°C, what is its length at 115°C? If the modulus of elasticity of steel is207 GPa, what is the stress induced in the bar? Is this stress tension orcompression?arrow_forward2. One end of a 40 cm metal rod 2.0 cm2 in cross section is in a steam bath while the other end is embedded in ice. It is observed that 13.3 grams of ice melted in 15 minutes from the heat conducted by the rod. What is the thermal conductivity of the rod.arrow_forward
- 5. A 10-in nominal pipe (outside diameter = 10.75in) is covered with a composite pipe insulation consisting of 2.0 in of insulation I placed next to the pipe and 1.5 in of insulation II placed upon insulation I. Assume that the inner and outer surface temperatures of the composite insulation are 900F and 150F respectively, and that the thermal conductivity of material I is 0.05 BTU/hr-ft-F and for material II is 0.039 BTU/hr-ft-F. What is the individual thermal resistance of insulation I?arrow_forward2. The lateral surface of a 50-units-long, thin vertical rod is insulated. When 0arrow_forwardA square piece is initially at 10 degrees Celsius everywhere. Each side is 0.05 m long. Then the four sides are instantly heated up to 25 degrees Celsius, 50 degrees Celsius, 30 degrees Celsius, and 0 degrees Celsius. a. Find how long it takes for the temperature profile of this square to become steady if the material is copper. What is the final temperature at the center of the square? b. Find how long it takes for the temperature profile of this square to become steady if the material is air. What is the final temperature at the center of the square? c. Which material takes longer to reach steady state and why?arrow_forwardThe Diamond Ring Solution. The processing chip on the computer that controls the navigation equipment on your spacecraft is overheating. Unless you fix the problem, the chip will be damaged and the navigation system will shut down. You open the panel and find that the small copper disk that was supposed to bridge the gap between the smooth top of the chip and the cooling plate is missing, leaving a 2.0 mm gap between them. In this configuration, the heat cannot escape the chip at the required rate. You notice by the thin smudge of thermal grease (a highly thermally conductive material used to promote good thermal contact between surfaces) that the missing copper disk was 2.0 mm thick and had a diameter of 1.0 cm. You know that the chip is designed to run below 70 °C, and the copper cooling plate is held at a constant 5.0 °C. (a) What was the rate of heat flow from the chip to the copper plate when the original copper disk was in place and the chip was at its maximum operating…arrow_forwardjust aarrow_forwardFig. 4 illustrates an insulating wall of three homogeneous layers with conductivities k1, k2, and k3 in intimate contact. Under steady state conditions, both right and left surfaces are exposed to a temperature in a steady state condition at ambient temperatures of T and T , respectively, while ß, and BLare the film coefficients respectively. Assume that there is no internal heat generation and that the heat flow is one-dimensional (dT/dy = 0). For the illustrated ambient temperature in Fig. 4, determine the temperature's distribution at each layer. Material 3 Material 1 Material 2 T= 100 T= 35 °C Kı=20 K3=50 (W/m.k) K3=30 (W/m.k) B1= 10 w/m² °K (W/m.k) BR= 15 w/m²°K 50 mm 35 mm 25 cm Fig. 4arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license