Concept explainers
A one-dimensional plane wall of thickness
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Introduction to Heat Transfer
- A plane wall 15 cm thick has a thermal conductivity given by the relation k=2.0+0.0005T[W/mK] where T is in kelvin. If one surface of this wall is maintained at 150C and the other at 50C, determine the rate of heat transfer per square meter. Sketch the temperature distribution through the wall.arrow_forwardFind the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are ρ =1200 kg/m 3, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux q =1000 W/m 2 is applied to the upper surface. The right and left surfaces are also kept at 0oC. Bottom surface is insulated.arrow_forwardYou are asked to estimate the maximum human body temperature if the metabolic heat produced in your body could escape only by tissue conduction and later on the surface by convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when the temperature only depends on the radial coordinater from the centerline. The governing dT +q""=0 dr equation is written as 1 d k- r dr r = 0, dT dr =0 dT r=ro -k -=h(T-T) dr (k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat generation rate in the body (W/m³) and is defined as heat generated per unit volume per second. The 1-D (radial) temperature distribution can be derived as: T(r) = q"¹'r² qr qr. + 4k 2h + 4k +T , where k is thermal conductivity of tissue air (A) q" can be calculated…arrow_forward
- A thermal system having a cylindrical form contains a sequence of cylindrical layers is used to cool hot gases. The thermal properties of the system materials are as follows : k = 231 W/m.K, c = 1033 J/kg.K and the density = 2702 kg/m^3. The gases to be cooled has a temperature equals to 500 C. Determine the temperature of the system that corresponds to 10 % of the maximum possible heat transfer between the gas and the system. Consider that the system has a characteristic length equals to 0.03 m. The heat convective coefficient is equal to 50 W/m^2.K. The initial temperature of the system is equal to 20 C. Select one: О а. 370 К O b. 489 K С. 341 К d. 410 Karrow_forwardFind the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9" (W/m) T=0°C T=0°C W=(10*32)cm B=(30*32)cmarrow_forward1-D, steady-state conduction with uniform internal energy generation occurs in a plane wall with a thickness of 50 mm and a constant thermal conductivity of 5 W/m/K. The temperature distribution has the form T = a + bx + cx² °C. The surface at x=0 has a temperature of To = 120 °C and experiences convection with a fluid for which T.. surface at x= 50 mm is well insulated (no heat transfer). Find: (a) The volumetric energy generation rate q. (15) (b) Determine the coefficients a, b, and c. 20 °C and h 500 W/m² K. The To: = 120°C T = 20°C h = 500 W/m².K 111 Fluid T(x)- = q, k = 5 W/m.K L = 50 mmarrow_forward
- subject: Thermodynamicsarrow_forwardA plane wall of thickness 2L=40 mm and thermal conductivity k=5 W/m·K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T=20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a+bx+cx² where a = 82.0 °C, b=-210 °C/m, c = -2x10 °C/m², and x is in meters. The origin of the x- coordinate is at the midplane of the wall. -L x -L (a) Determine the surface heat fluxes, qx(-L) and qx(+L). (b) What is the volumetric rate of heat generation & in the wall? (c) What is the convection heat transfer coefficient for the surfaces at x = +L? (d) Obtain an expression for the heat flux distribution q (as a function of x). Is the heat flux zero at any location? (e) If the source of the heat generation is suddenly deactivated (i. e. q = 0), what temperature will the wall eventually reach with q = 0?arrow_forwardThe heat flow per unit length of a thick cylindrical pipe is 772 W per meter. The pipe has radii ri = 12 cm, ro = 24 cm, outside surface temperature, To = 95 deg C and k = 0.05 + 0.0008T where T is in deg C and k is in W/(m K). Find the inside surface temperature of the pipe, assuming steady state conditions and accounting for the variation of thermal conductivity with temperature. Also determine the temperature of a point midway to the inside and outside radius.arrow_forward
- Q1/ Consider a large plane wall of thickness L=0.03 m. The wall surface at x =0 is insulated, while the surface at x =L is maintained at a temperature of 30°C. The thermal conductivity of the wall is k=25 W/m °C, and heat is generated in the wall at a rate of g = 9oe0.5x/L W/m³ Where g, = 8 x 10 W /m². Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary conditions for heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) determine the temperature of the insulated surface of the wall.arrow_forwardPlease i need hand written solution on pages in 60 mins i will give you positive feedbackarrow_forwardFind the two-dimensional temperature distribution T(r,z) under steady state condition. Where, To=20 oC, TL=100 oC. The density, conductivity and specific heat of the material are ρ =800 kg/m3, k=200 W/m.K, and cp=2500 J/kg.K, respectively. Also, r1=10 cm and L=20 cm.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning