Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.12P
Consider a plane wall 100 mm thick and of thermal conductivity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve using the methodology : Known, Find, Schematic Diagram, Assumptions, Properties, Analysis and Comments.
Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are ρ =1200
kg/m 3, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux q =1000 W/m 2 is applied to the upper surface. The right and left surfaces are also kept at 0oC. Bottom surface is insulated.
You are asked to estimate the maximum human body temperature if the metabolic
heat produced in your body could escape only by tissue conduction and later on the surface by
convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in
radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when
the temperature only depends on the radial coordinater from the centerline. The governing
dT
+q""=0
dr
equation is written as
1 d
k-
r dr
r = 0,
dT
dr
=0
dT
r=ro -k -=h(T-T)
dr
(k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the
skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat
generation rate in the body (W/m³) and is defined as heat generated per unit volume per second.
The 1-D (radial) temperature distribution can be derived as:
T(r) =
q"¹'r² qr qr.
+
4k 2h
+
4k
+T
, where k is thermal conductivity of tissue
air
(A) q" can be calculated…
Chapter 2 Solutions
Introduction to Heat Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r1 has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - Prob. 2.9PCh. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. Temperatures are measured at the left-hand face and at a point 4 cm from the left-hand face of the planar wall shown in the figure below. These temperatures are T₁ = 45.3 °C and T* = 21.2 °C. The heat flow through the planar wall is steady and one dimensional. What is the value of T2 at the right-hand surface of the wall? TI T* 4 cm 10 cm T2arrow_forward4x F2 # 3 E 4, F3 54 $ R F4 Ac = 1m² ▬ H DII x= 1 m (4) Consider a wall (as shown above) of thickness L-1 m and thermal conductivity k-1 W/m-K. The left (x=0) and the right (x=1 m) surfaces of the wall are subject to convection with a convectional heat transfer coefficient h= 1 W/m²K and an ambient temperature T. 1 K. There is no heat generation inside the wall. You may assume 1-D heat transfer, steady state condition, and neglect any thermal contact resistance. Find T(x). % To,1 = 1 K h₁ = 1 W/m²K 5 Q Search F5 T T₁ A 6 x=0 F6 à = 0 W/m³ k= 1W/mK L=1m Y 994 F7 & 7 T₂ U Ton2 = 1 K h₂ = 1 W/m²K1 PrtScn F8 Page of 7 ) 0 PgUp F11 Parrow_forwardFind the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9" (W/m) T=0°C T=0°C W=(10*32)cm B=(30*32)cmarrow_forward
- Q3. What is the analogical reason between heat transfer by conduction and flow of electricity through ohmic resistance? Use a composite wall of a building to illustrate the concept. A composite slab with three layers of thermal conductivities k1, k2, k3 and thickness t1, t2, t3 respectively, are placed in a close contact. Derive an expression from the first principle for the heat flow through the composite slab per unit surface area in terms of the overall temperature difference across the slab.arrow_forwardThe temperature gradient is inversely proportional to the cross sectional area for one dimensional flow of heat in a solid material of contact thermal conductivity. Select one: a. True O b. Falsearrow_forwardThe thermal current density of a solid varies as: JT(x) = 1000e W m² W = If the solid starts at x = 0, the thermal conductivity is 2, and the temperature at x = 0 is To = 1000 K, find the equation for the temperature profile as a function of x.arrow_forward
- Determine k, thermal conductivity of a wall if q = 1000 kcal/m2 -hr at thickness, k = 33 mm and ∆t = 30°C.arrow_forwardLook at the picture and thank youarrow_forwardQ1/ A thick wall consists two layers of Gypsum, insulation and brick as shown in figure below. The ambient temperature is 20 °C and heat transfer coefficient is 5 W/m2. K in the left side. The surface temperature of right side is 45 °C. find the heat losses per meter length. What will happen if the insulation's thickness * .increases by 25% Gypsum k = 0.04W/m. K T = 45 °C h=5 W/m'. K T. = 20 °C 5 cm Insulation k = 0.04W/m. K Brick k = 0.69 W/m. Karrow_forward
- Do fast i will give you good ratearrow_forwardGenerate a trial solution for the conduction equation using the equation u = XT.arrow_forwardThe density of thermal current in a solid varies as: JT(x) = 1000e-x^2(W/m2) Find the equation for the temperature profile as a function of x if the solid begins at x=0, the thermal conductivity is 2(W/(m*K)), and the initial temperature is T0=1000 K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license