Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.50P
(a)
To determine
The verification of temperature distribution equation satisfy the heat diffusion equation.
(b)
To determine
The verification of the expression for rate of heat conduction.
(c)
To determine
The energy balance equation.
(d)
To determine
The actual reactor temperature, the outer surface temperature and temperature at centerline of the cable.
(e)
To determine
The inner and outer sleeve over temperature graphs.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1-D conduction heat transfer problem with internal energy generation is governed by the following equation:
+-=
dx2 =0
W
where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that
m-K
T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the
temperature at nodes 3 and 4.
Insulated
Ar
, T
For the answer window, enter the temperature at node 4 in Kelvin (K).
Your Answer:
EN
SORN
Answer
units
Pri
qu) 232 PM
4/27/2022
99+
66°F Sunny a .
20
ENLARGED
oW TEXTURE
PRT SCR
IOS
DEL
F8
F10
F12
BACKSPACE
num
-
%3D
LOCK
HOME
PGUP
170
The initial temperature distribution of a 5 cm long stick is given by the
following function. The circumference of the rod in question is completely
insulated, but both ends are kept at a temperature of 0 °C. Obtain the heat
conduction along the rod as a function of time and position ? (x =
1.752 cm²/s for the bar in question)
100
A) T(x1) = 1 Sin ().e(-1,752 (³¹)+(sin().e (-1,752 (²) ₁ +
1
3π
TC3
.....)
100
t + ··· .......
13) T(x,t) = 200 Sin ().e(-1,752 (²t) + (sin (3). e (-1,752 (7) ²) t
B)
3/3
t + …............)
C) T(x.t) = 200 Sin ().e(-1,752 (²t) (sin().e(-1,752 (7) ²) t
–
D) T(x,t) = 200 Sin ().e(-1,752 (²)-(sin().e (-1,752 (²7) ²) t
E) T(x.t)=(Sin().e(-1,752 (²t)-(sin().e(-1,752 (²) t+
t + ··· .........)
t +....
t + ··· .........)
…..)
Write the finite difference form of the two dimensional steady state heat conduction equation with internal heat generation at a constant rate ‘g’ for a region 0.03m X 0.03m by using a mesh size ∆x=∆y= 0.01 m for a material having thermal conductivity 25 W/m.K and heat generation rate, 107 W/m3 . All the boundary surfaces are maintained at 10°C. Express the finite difference equations in matrix form for the unknown node temperatures.
Chapter 2 Solutions
Introduction to Heat Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r1 has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - Prob. 2.9PCh. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Passage of an electric current through a long conducting rod of radius r; and thermal conductivity kr, results in uniform volumetric heating at a rate of q. The conduction rod is wrapped in an electrically non-conducting cladding material of radius ro and thermal conductivity ke and convection cooling is provided by an adjoining fluid. For steady-state conditions, a) Determine an expression for the heat transfer per unit length q', passing through the cladding in terms of à, and ri. b) Determine an expression for T, the temperature of the cladding at ri and also for To at ro. c) Calculate these cladding temperatures in °C when ri and ro are 3 mm and 5 mm, q, = 200 kW/m³, kc = 0.15 W/m/K, T = 20°C and h= 20 W/m²/K. Conducting rod, å, k, Cladding, k d) Calculate the critical radius. To decrease the internal cladding temperature would it be necessary to increase or decrease ro; or should it remain unchanged? Explain. To, h 201arrow_forwardQ1 Passage of an electric current through a long conducting rod of radius r; and thermal conductivity k, results in uniform volumetric heating at a rate of ġ. The conduct- ing rod is wrapped in an electrically nonconducting cladding material of outer radius r, and thermal conduc- tivity k, and convection cooling is provided by an adjoining fluid. Conducting rod, ġ, k, 11 To Čladding, ke For steady-state conditions, write appropriate forms of the heat equations for the rod and cladding. Express ap- propriate boundary conditions for the solution of these equations.arrow_forwardConsider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forward
- !arrow_forwardDerive an expression for the temperature distribution within a sphere that has inner radius r, where the temperature T, and outer radius r, where the temperature T,. Assume the heat source within the wall of sphere is q' and the heat conductivity is k. also assume one-dimensional heat transfer (r - direction)arrow_forwardDo fast i will give you good ratearrow_forward
- To obtain particular solution for one dimensional steady heat conduction equation we need no boundary condition (BC). one boundary condition (BC). two boundary conditions (BCs). three boundary conditions (BCs). Steady heat conduction equation without heat generation is called Laplace equation. diffusion equation. Poisson equation.arrow_forwardWrite one dimensional steady state conduction heat transfer equation. By using this equation derive the expression of one dimensional heat transfer rate across a Wall of thickness "t" and isothermal surface temperatures T1 and T2 on both sides of the wall considering thermal conductivity "k" as constant . Also tell what effect comes on the temperature distribution across the wall if the thermal conductivity varies with temperature.arrow_forwardAn annulus (e.g., a tube) has a temperature of Ti at the inner surface (at ri) and a temperature of To at the outer surface (at ro). Steady-state conditions prevail and there is not any heat generation in the annulus. However, the thermal conductivity k of the annulus is a strong function of temperature and can be described mathematically by the following function k(T) = a + bT + cT2. Calculate the total rate of heat flow (not heat flux) through the annulus if it is L long. Show steps to get to the answer attached.arrow_forward
- After a thorough derivation by Doraemon to establish an equation for cylindrical fuel rod of a nuclear reactor. Here he was able to come up an equation of heat generated internally as shown below. 96 = 9. where qG is the local rate of heat generation per unit volume at radius r, ro is the outside radius, and qo is the rate of heat generation per unit volume at the centre line. Calculate the temperature drop from the centre line to the surface for a 2.5 cm outer diameter rod having k = 25 W/m K, if the rate of heat removal from the surface is 1650 kW/m2 A 619 °C 719 °C C) 819 °C 919 °C E 1019 °C F None of thesearrow_forwardProblem 4 A cork board (k = 0.039W/m K) 3 cm thick is exposed to air with an average temperature T.. = 30°C with a convection heat transfer coefficient, h = 25 W/m².K. The other surface of the board is held at a constant temperature of 15°C. A volumetric heat generation of 5 W/m³ is occurring inside the wall. Assuming one dimensional conduction, write the governing equation and express the boundary conditions for the wall. (solve the equation is not required) Problomarrow_forwardFind the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9" (W/m) T=0°C T=0°C W=(10*32)cm B=(30*32)cmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License