Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.13P
To determine
The expression for heat transfer rate and the fluid temperature at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are asked to estimate the maximum human body temperature if the metabolic
heat produced in your body could escape only by tissue conduction and later on the surface by
convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in
radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when
the temperature only depends on the radial coordinater from the centerline. The governing
dT
+q""=0
dr
equation is written as
1 d
k-
r dr
r = 0,
dT
dr
=0
dT
r=ro -k -=h(T-T)
dr
(k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the
skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat
generation rate in the body (W/m³) and is defined as heat generated per unit volume per second.
The 1-D (radial) temperature distribution can be derived as:
T(r) =
q"¹'r² qr qr.
+
4k 2h
+
4k
+T
, where k is thermal conductivity of tissue
air
(A) q" can be calculated…
How long should it take to boil an egg? Model the egg as a sphere with radius of 2.3 cm that has properties similar to water with a density of = 1000 kg/m3 and thermal conductivity of k = 0.606 Watts/(mC) and specific heat of c = 4182 J/(kg C). Suppose that an egg is fully cooked when the temperature at the center reaches 70 C. Initially the egg is taken out of the fridge at 4 C and placed in the boiling water at 100 C. Since the egg shell is very thin assume that it quickly reaches a temperature of 100 C. The protein in the egg effectively immobilizes the water so the heat conduction is purely conduction (no convection). Plot the temperature of the egg over time and use the data tooltip in MATLAB to make your conclusion on the time it takes to cook the egg in minutes.
Which formula is used to calculate the heat conduction in the AXIAL direction in a
vertically located pipe segment whose inner and outer surfaces are perfectly
insulated. Here r, is inner radius, r, outer radius, Tri pipe inner surface temperature,
Tro pipe outer surface temperature, L is the length of the pipe, T the temperature on
the lower surface, Ty the temperature on upper surface.
Tu
r;
Tro
r
Chapter 2 Solutions
Introduction to Heat Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r1 has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - Prob. 2.9PCh. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The temperature distribution across a wall 0.25 m thick at a certain instant of time is T(x) = a + bx + cx², where T is in degrees Celsius and x is in meters, a = 200 C, b = -200 C/m, and c = 30 C/m². The wall has a thermal conductivity of 2.5 W/m.K. (a) Determine the heat flux into and out of the wall (q"in and q'out). (b) If the cold surface is exposed to a fluid at 100 C, what is the convection coefficient h? - Degree Celsius 200°C q" In- q'in q'out= h = Choose... Choose.... Choose... L₂x K = 2.5 W/m.k T(x)-200-200 x +30x² q" Out 142.7 C 11 L=0.25 m Fluid Too = 100 °C harrow_forward= Consider a large plane wall of thickness L=0.3 m, thermal conductivity k = 2.5 W/m.K, and surface area A = 12 m². The left side of the wall at x=0 is subjected to a net heat flux of ɖo = 700 W/m² while the temperature at that surface is measured to be T₁ = 80°C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary equations for steady one- dimensional heat conduction through the wall, (b) obtain a relation for the variation of the temperature in the wall by solving the differential equation, and (c) evaluate the temperature of the right surface of the wall at x=L. Ti до L Xarrow_forwardThe initial temperature of a 50 cm long silver wire is 50 °C. The circumference of the wire in question is completely insulated, but both ends are kept at a temperature of 0 °C (zero degrees Celsius). Obtain the heat conduction along the wire as a function of time and position and, taking a single term in the solution, determine how many degrees Celsius the temperature in the middle of the rod will be after 7 minutes. (For silver wire, α=1.70 cm2/s.)arrow_forward
- The time evolution of the temperature of an object follows the Newton's cooling laws dT dx = -k(T - Ts), where the term k = 2.2 (1/s) is the heat transfer constant, and Tg = 25.6° C is the ambient temperature. The initial temperature of the object at time t = = 0 is T(t = 0) = 200°C. °C Use the Euler's method, and a time step of h=0.2s, calculate: When t = = 0.2s, T = °C When t 1s, T =arrow_forwardWrite the heat rate equation only, don’t evaluate. Using table 4.1 in “Introduction to Heat transfer, 6th ed., Wiley”arrow_forwardPLEASE HELP ANSWER THIS THERMODYNAMICS PRACTICE QUESTION THANK YOUarrow_forward
- Heat transferarrow_forwardA certain material has a thickness of 30 cm and a thermal conductivity of 0.04 W/m- °C. At a particular instant in time, the temperature distribution with x, the distance from the left face, is T = 150x ^ 2 - 30x , where x is in meters. Calculate the heat-flow rates atx x = 0 and x = 30 cm . Is the solid heating up or cooling down?arrow_forwardThe temperature distribution across a wall 0.3 m thick at a certain instant of time is T(x) = a+ b+cx?, where T is in degrees Celsius and x is in meters, a = 200°C,b = -200°, and c = conductivity of 1 W /m · K. 30°C/m² . The wall has a thermal (a) On a unit surface area basis, determine the rate of heat transfer into and out of the wall and the rate of change of energy stored by the wall. (b) If the cold surface is exposed to a fluid at 100°C, what is the convection coefficient? k=1W/m•k T(x) =200-200x + 30x² 200°C- ĖST 142.7°C q"out | Fluid Too = 100°C,h 9"in |L-0.3marrow_forward
- The subject is Mechanics of Deformable Bodiesarrow_forwardA metallic plate, whose external faces are kept at temperatures T1 and T2 by a cooling fluid, has a thin-thickness resistance heater with thermal flux equal to o, as shown in the following figure. T, т, 9cond gcond - L + L The differential energy balance of this plate, in Cartesian coordinates, can be expressed by ôT pcp dy (" dy where r is the material's specific mass, cp is the material's specific heat, T is the temperature, t is the time, and x, y, z are the variables on the Cartesian axes. Consider the heat flux of this one-dimensional plate in the x direction, the constant thermal conductivity of the material, and steady state operation. Check the equation that describes this phenomenon and explain why your answer a (aT ôz dz pc. 出业姐,业逃】- ()- dzarrow_forwardA plane wall of thickness 2L=40 mm and thermal conductivity k=5 W/m·K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T=20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a+bx+cx² where a = 82.0 °C, b=-210 °C/m, c = -2x10 °C/m², and x is in meters. The origin of the x- coordinate is at the midplane of the wall. -L x -L (a) Determine the surface heat fluxes, qx(-L) and qx(+L). (b) What is the volumetric rate of heat generation & in the wall? (c) What is the convection heat transfer coefficient for the surfaces at x = +L? (d) Obtain an expression for the heat flux distribution q (as a function of x). Is the heat flux zero at any location? (e) If the source of the heat generation is suddenly deactivated (i. e. q = 0), what temperature will the wall eventually reach with q = 0?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license