Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.49P

Two-dimensional, steady-state conduction occurs in a hollow cylindrical solid of thermal conductivity k = 16 W/m K, outer radius r o = 1 m and overall length 2 z o = 5 m, where the origin of the coordinate system is located at the midpoint of the center line. The inner surface of the cylinder is insulated, and the temperature distribution within the cylinder has the form T r , z = a + b r 2 + c ln r + d z 2 , where a = 20 ° C, b = 150 ° C/m 2 , c = 12 ° C, d = 300 ° C/m 2 and r and z are in meters.

  1. Determine the inner radius r i of the cylinder.
  2. Obtain an expression for the volumetric rate of heat generation, q . W/m 3 . Determine the axial distribution of the heat flux at the outer surface, q r " r o , z . What is the heat rate at the outer surface? Is it into or out of the cylinder?
  3. Determine the radial distribution of the heat flux at the end faces of the cylinder, q r " z , + z o and q r " r , z o . What are the corresponding heat rates? Are they into or out of the cylinder?
  4. Verify that your results are consistent with an over-all energy balance on the cylinder.

Blurred answer
Students have asked these similar questions
Do fast i will give you good rate
The inner and outer radii of a hollow cylinder are 15 mm (r, ) and 25 mm (r, ), respectively. The temperatures of the inner and outer walls are 400°C (T,) and 350°C (T,), respectively. The thermal conductivity of the cylinder material obeys the relationship K = (400-0.05T) W/mK where T is in degrees Celsius. Find the heat transferred from the hollow cylinder per unit length. The thermal conductivity,
Assume steady-state, one-dimensional heat conduction through the symmetric shape shown in Figure 1.Assuming that there is no internal heat generation, derive an expression for the thermal conductivity k(x) for these conditions: A(x) = (1 -x), T(x) = 300(1 - 2x -3x),and q = 6000 W, where A is in square meters, T in Kelvin’s, and x in meters. Consider x= 0 and 1.

Chapter 2 Solutions

Introduction to Heat Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license