Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.33P
To determine
The heat diffusion equation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What assumptions were used to derive the following (simplified) version of the heat diffusion equation: VT=0
Steady State
Constant Properties
No Thermal Energy Generation
1 Dimensional
The principles of Newton’s Law of Cooling.
You can imagine and create your own data.
Discuss the nature and origin of the four (4) types of coffee where it originates. Various settings, formulations, containers, and the number of trials will be properly discussed in their methodology. Once the experimentation has been done, the thermal coefficient shall be computed and recorded. The temperature coefficient acquired at t=0 and t= 5 mins, will be tested at t = 6,7,8,9 and 10 minutes.
b) Using the heat diffusion equation which you have derived in part (a).
Let consider a one-dimensional plane wall that separate of two fluids which
is illustrated in Figure lb with constant properties (e.g. thermal
conductivity, k) and uniform internal generation (e.g. no heat generation)
and steady state condition (e.g no change in the amount of energy storage)
i) Find the expression of temperature distribution, T(x)
ii) and the expression of heat flow, q
Ts.
Cold fluid
T2 h2
Hot fluid
T2
T1. h
Lox
x = L
Figure 1b
Chapter 2 Solutions
Introduction to Heat Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r1 has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - Prob. 2.9PCh. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forwardaccording to the problem, I have difficulty in calculating please, please give the solution and include the formulaarrow_forwardLet an aluminum rod of length 20 cm be initially at the uniform temperature of 25° C. Suppose that at time t = 0, the end x = 0 is cooled to 0° C while the end x = 20 is heated to 60° C, and both are thereafter maintained at those temperatures. (a) Find the temperature distribution in the rod at any time t.arrow_forward
- 2. A slab of thickness Lis initially at zero temperature. For times t> 0, the boundary surface at x 0 is subjected to a time-dependent prescribed temperature f(t) defined by: a + bt for 0Ti and the boundary at x = L is kept insulated. Using Duhamel's theorem, develop an expression for the temperature distribution in the slab for times (i) t t1.arrow_forwardplease help me solve this problem show step by steparrow_forwardQ1 Passage of an electric current through a long conducting rod of radius r; and thermal conductivity k, results in uniform volumetric heating at a rate of ġ. The conduct- ing rod is wrapped in an electrically nonconducting cladding material of outer radius r, and thermal conduc- tivity k, and convection cooling is provided by an adjoining fluid. Conducting rod, ġ, k, 11 To Čladding, ke For steady-state conditions, write appropriate forms of the heat equations for the rod and cladding. Express ap- propriate boundary conditions for the solution of these equations.arrow_forward
- In the design of a certain computer application, a heat flow simulation is required. In the simulation, the heat conductor, which is of length 10m, has a perfectly insulated surface. The temperature at both ends of the conductor is kept consistently at zero. The initial temperature at any point of the conductor is uniform at 25°C. The 1-dimensional heat equation is given as follows: for all 0arrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = = W 3 m. k . Ay m-1, n m, n | Δx=" m, n+1 m, n-1 The side insulatedarrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = W 3 m. k Ay m-1, n 11- m2, 11 m, n+1 m, n-1 The side insulatedarrow_forwardA 1-D conduction heat transfer problem with internal energy generation is governed by the following equation: +-= dx2 =0 W where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that m-K T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the temperature at nodes 3 and 4. Insulated Ar , T For the answer window, enter the temperature at node 4 in Kelvin (K). Your Answer: EN SORN Answer units Pri qu) 232 PM 4/27/2022 99+ 66°F Sunny a . 20 ENLARGED oW TEXTURE PRT SCR IOS DEL F8 F10 F12 BACKSPACE num - %3D LOCK HOME PGUP 170arrow_forwardPROBLEM: IVD-39 BOOK: ENGINEERING THERMOFLUIDS, M. MASSOUDarrow_forwardi need the answer quicklyarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license