Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.22P
Calculate the thermal conductivity of air, hydrogen, and carbon dioxide at 300Â K, assuming ideal gas behavior. Compare your calculated values to values from Table A.4.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(3)
The thermal conductivity of helium at 400 K is 0.176 W m-! K-1. Knowing only
this datum, estimate the thermal conductivity of helium at 800 K. Compare your
estimate to the value obtained from the figure below.
06
as
02
01
co
CO.N A
HCI
Cl,
200
400
00
Temperature, K
1200
1400
600
What do you conclude about the equation that you used for your estimate?
2000kg cast iron housing at 450 degree Celsius is quenched in 5000kg of water at 15 degree C. What is the amount of heat transferred to water, use specific heat of water to be 4.18 kJ/kg.K and specific heat of iron to be 0.42 kJ/kg.K
3.4
Estimate the rate of heat loss due to radiation from a covered pot of water at 95 ° C. How does this compare with the 60 W that is lost due only to convection and conduction losses? What amount of energy input would be needed to maintain the water at its boiling point for 30 minutes? The polished stainless steel pot is cylindrical, 20 cm in diameter and 14 cm high, with a tight-fitting flat cover. The air temperature in the kitchen is about 25 ° C. State any assumptions you make in deriving your estimates
Chapter 2 Solutions
Introduction to Heat Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r1 has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - Prob. 2.9PCh. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - Prob. 2.13PCh. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Prob. 2.20PCh. 2 - Use IHT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - At a given instant of time, the temperature...Ch. 2 - Prob. 2.27PCh. 2 - Uniform internal heat generation at q.=5107W/m3 is...Ch. 2 - Prob. 2.29PCh. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Beginning with a differential control volume in...Ch. 2 - A steam pipe is wrapped with insulation of inner...Ch. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Two-dimensional, steady-state conduction occurs in...Ch. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Prob. 2.62PCh. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Prob. 2.68PCh. 2 - The steady-state temperature distribution in a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 0.6-cm diameter mild steel rod at 38C is suddenly immersed in a liquid at 93C with hc=110W/m2K. Determine the time required for the rod to warm to 88C.arrow_forwardFind the steady-state temperature distribution in a metalic plate 20 cm by 60 cm if the two adjacent plates are held at 200 degree and the other two sides at zero degree.arrow_forwardThere is 100 grams of water in a brass calorimeter of mass 200 grams. It is found that 590 calories are required to raise the temperature of water and container from 20°C to 25°C. What is the specific heat of the brass? COMPLETE FBD SOLUTION AND REQUIREMENTS PS. THIS IS A HEAT TRANSFER PROBLEMarrow_forward
- Recent studies show that the major energy consumption in Fijian villages is wood which is used for cooking on open fires. Typical consumption of wood is 1 kg/person/day. (a) Estimate the heat energy required to boil a 2 litre pot full of water. Assuming this to be the cooking requirement of each person, compare this with the heat content of the wood, and thus estimate the thermal efficiency of the open fire. (b) How much timber has to be felled each year to cook for a village of 200 people ? Assuming systematic replanting, what area of crop must the village therefore set aside for fuel use if it is not to make a net deforestation ?arrow_forwardThere is a long cylinder inside an oven and we are using lumped capacitance method to find the temperature at its extremes. The temperature at the centre of the cylinder is 1000 C, what will be the temperature at its one end where it is away from heat source according to our calculations? not sufficient information more than 1000 C equal to 1000 C less than 1000 Carrow_forwardPlease quicklyarrow_forward
- A refrigeration storage is supplied with 10,000 kg of fish at a temperature of 20•C. The fish has to be cooled to -10°C for preserving it for a long period without deterioration. The cooling takes place in 10 hrs. The specific heat of fish is 0.7 above freezing point and 0.3 below freezing point which is -3°C. The latent heat of freezing is 55.5 kCal/kg. Find the refrigerating capacity of the plant in tons. Ans. 24.38 tons of Refrigerationarrow_forwardChoose the correct answer for heat: Select one: O a. Path Function O b. Intensive properties O C. Point Function O d. Extensive propertiesarrow_forwardThe heat diffusion equation provides the temperature distribution for a given conduction application. However, it does not directly provide the heat flow. Choose an option: TrueFalsearrow_forward
- 2. Cooling of a Sheet of Materials Consider a thin sheet of solid material with a large surface. One side of the material at r = O is insulated, so that the heat flux there is zero, while the other side at (dimensionless) a = 1 is kept at (dimensionless temperature) of 0 = 0. Initially, the temperature distribition in the thin sheet is f(x) = (1-x2)/2. We wish to determine the unsteady-state temperature distribution within the sheet. (a) Write dowm the governing equation and the initial and boundary conditions for the (dimensionless) temperature 0, i.e., one-dimensional unsteady-state conduction described in class. (b) Derive the eigenvalues and eigenfunctions for the governing equation. (c) Derive the complete solution of the problem.arrow_forwardDefine and briefly elaborate the terms listed below, support your elaboration with mathematical equations and illustrations where necessay 4. Prandtl, Schmidt, Lewis, Nusselt, and Sherwood number 5. Mole fraction of species and mass fraction of species. 6. Critical radius of insulation related to heat transfer in pipes.arrow_forwardOne more time. PLEASE explain how the integral is formed, dT/dr doesn't make sense. Why we are replacing L with dr? dr is in radial direction and L is in the vertical direction.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license