General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 19.24SP
(a)
Interpretation Introduction
Interpretation:
Tellurium or Iodine which is having higher electronegativity has to be predicted.
Concept introduction:
Periodic properties
- Electronegativity increases in a period from left to right because the atomic size decreases and nuclear charge increases from going left to right in a period.
- Electronegativity of a series of
transition metals is almost similar - Electronegativity decreases down the group because the atomic size increases.
(b)
Interpretation Introduction
Interpretation:
Nitrogen or Phosphorous which is having higher electronegativity has to be predicted.
Concept introduction:
Periodic properties
- Electronegativity increases in a period from left to right because the atomic size decreases and nuclear charge increases from going left to right in a period.
- Electronegativity of a series of transition metals is almost similar
- Electronegativity decreases down the group because the atomic size increases.
(c)
Interpretation Introduction
Interpretation:
Fluorine or Indium which is higher electronegativity has to be predicted.
Concept introduction:
Periodic properties
- Electronegativity increases in a period from left to right because the atomic size decreases and nuclear charge increases from going left to right in a period.
- Electronegativity of a series of transition metals is almost similar
- Electronegativity decreases down the group because the atomic size increases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Energy is required to remove two electrons from Ca to formCa2+, and energy is required to add two electrons to O toform O2 - . Yet CaO is stable relative to the free elements.Which statement is the best explanation? (a) The latticeenergy of CaO is large enough to overcome these processes.(b) CaO is a covalent compound, and these processes areirrelevant. (c) CaO has a higher molar mass than either Ca orO. (d) The enthalpy of formation of CaO is small. (e) CaO isstable to atmospheric conditions.
The elements sodium, aluminum, and chlorine are in the same period.
(a) Which has the greatest electronegativity?
(b) Which of the atoms is smallest?
(c) Which is the largest possible oxidation state for each of these elements?
(d) Will the oxide of each element in the highest oxidation state (write its formula)
be acidic, basic, or amphoteric?
Draw a Lewis structure for(a) The cyclic silicate ion Si₄O₁₂⁸⁻(b) A cyclic hydrocarbon with formula C₄H₈
Chapter 19 Solutions
General Chemistry: Atoms First
Ch. 19.1 - Prob. 19.1PCh. 19.2 - Prob. 19.2PCh. 19.2 - Prob. 19.3CPCh. 19.4 - Prob. 19.4PCh. 19.7 - Prob. 19.5PCh. 19.8 - Prob. 19.6CPCh. 19.10 - Prob. 19.7PCh. 19.13 - Prob. 19.8CPCh. 19.13 - Prob. 19.9PCh. 19.14 - Prob. 19.10P
Ch. 19 - Prob. 19.11CPCh. 19 - Prob. 19.12CPCh. 19 - Locate the following elements on the periodic...Ch. 19 - Prob. 19.14CPCh. 19 - Prob. 19.15CPCh. 19 - Prob. 19.16CPCh. 19 - Prob. 19.17CPCh. 19 - Prob. 19.18CPCh. 19 - Prob. 19.19CPCh. 19 - Prob. 19.20SPCh. 19 - Prob. 19.21SPCh. 19 - Prob. 19.22SPCh. 19 - Prob. 19.23SPCh. 19 - Prob. 19.24SPCh. 19 - Prob. 19.25SPCh. 19 - Prob. 19.26SPCh. 19 - Prob. 19.27SPCh. 19 - Prob. 19.28SPCh. 19 - Which compound in each of the following pairs is...Ch. 19 - Prob. 19.30SPCh. 19 - Prob. 19.31SPCh. 19 - Prob. 19.32SPCh. 19 - Prob. 19.33SPCh. 19 - Prob. 19.34SPCh. 19 - Prob. 19.35SPCh. 19 - Prob. 19.36SPCh. 19 - Prob. 19.37SPCh. 19 - Prob. 19.38SPCh. 19 - Prob. 19.39SPCh. 19 - Prob. 19.40SPCh. 19 - Prob. 19.41SPCh. 19 - Prob. 19.42SPCh. 19 - Prob. 19.43SPCh. 19 - Prob. 19.44SPCh. 19 - Prob. 19.45SPCh. 19 - Prob. 19.46SPCh. 19 - Prob. 19.47SPCh. 19 - Prob. 19.48SPCh. 19 - Prob. 19.49SPCh. 19 - Prob. 19.50SPCh. 19 - Prob. 19.51SPCh. 19 - Prob. 19.52SPCh. 19 - Prob. 19.53SPCh. 19 - Prob. 19.54SPCh. 19 - Prob. 19.55SPCh. 19 - Prob. 19.56SPCh. 19 - Prob. 19.57SPCh. 19 - Prob. 19.58SPCh. 19 - Prob. 19.59SPCh. 19 - Prob. 19.60SPCh. 19 - Prob. 19.61SPCh. 19 - Prob. 19.62SPCh. 19 - Prob. 19.63SPCh. 19 - Prob. 19.64SPCh. 19 - Prob. 19.65SPCh. 19 - Prob. 19.66SPCh. 19 - Prob. 19.67SPCh. 19 - Prob. 19.68SPCh. 19 - Prob. 19.69SPCh. 19 - Prob. 19.70SPCh. 19 - Draw electron-dot structures for: (a) Nitrous...Ch. 19 - Prob. 19.72SPCh. 19 - Prob. 19.73SPCh. 19 - Prob. 19.74SPCh. 19 - Prob. 19.75SPCh. 19 - Prob. 19.76SPCh. 19 - Prob. 19.77SPCh. 19 - Prob. 19.78SPCh. 19 - Describe the process used for the industrial...Ch. 19 - Prob. 19.80SPCh. 19 - Prob. 19.81SPCh. 19 - Describe the structure of the sulfur molecules in:...Ch. 19 - Prob. 19.83SPCh. 19 - Prob. 19.84SPCh. 19 - Prob. 19.85SPCh. 19 - Describe the contact process for the manufacture...Ch. 19 - Describe a convenient laboratory method for...Ch. 19 - Prob. 19.88SPCh. 19 - Prob. 19.89SPCh. 19 - Prob. 19.90SPCh. 19 - Account for each of the following observations:...Ch. 19 - Prob. 19.92SPCh. 19 - Prob. 19.93SPCh. 19 - Prob. 19.94SPCh. 19 - Prob. 19.95SPCh. 19 - Prob. 19.96SPCh. 19 - Prob. 19.97SPCh. 19 - Prob. 19.98SPCh. 19 - Prob. 19.99SPCh. 19 - Write a balanced net ionic equation for each of...Ch. 19 - Prob. 19.101SPCh. 19 - Prob. 19.102CHPCh. 19 - Prob. 19.103CHPCh. 19 - Prob. 19.104CHPCh. 19 - Prob. 19.105CHPCh. 19 - Prob. 19.106CHPCh. 19 - Prob. 19.107CHPCh. 19 - Prob. 19.108CHPCh. 19 - Prob. 19.109CHPCh. 19 - Prob. 19.110CHPCh. 19 - Prob. 19.111CHPCh. 19 - Prob. 19.112CHPCh. 19 - Prob. 19.113CHPCh. 19 - Which of the group 4A elements have allotropes...Ch. 19 - Prob. 19.115CHPCh. 19 - Prob. 19.116CHPCh. 19 - Prob. 19.117CHPCh. 19 - Prob. 19.118CHPCh. 19 - Prob. 19.119CHPCh. 19 - Prob. 19.120CHPCh. 19 - Prob. 19.121CHPCh. 19 - Prob. 19.122CHPCh. 19 - Prob. 19.123CHPCh. 19 - Prob. 19.124CHPCh. 19 - Prob. 19.125CHPCh. 19 - Prob. 19.126CHPCh. 19 - Give one example from main group chemistry that...Ch. 19 - Prob. 19.128CHPCh. 19 - Prob. 19.129CHPCh. 19 - Prob. 19.130MPCh. 19 - Prob. 19.133MPCh. 19 - Prob. 19.134MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Three main group elements, X, Y and Z, from three different groups inthe Periodic Table, each form a neutral trifluoride, i.e. XF3, YF3 andZF3. (a) To which three groups of the Periodic Table could the elementsX, Y and Z belong? Are any of these atoms X, Y or Zhypervalent in the trifluorides formed? (b) Use VSEPR theory to deduce the shapes of the molecules XF3,YF3 and ZF3, showing full working, and sketch these shapes (c) Only two of the three trifluorides have a non-zero dipole moment.For these molecules to which groups of the Periodic Table do thecentral atoms belong?arrow_forward16. Draw Lewis dot structures for an atom of each of following elements. (a) Li (b) Ne Ne (c) O (d) P 3256 (e) Be (f) Si (g) I (h) Barrow_forwardWrite the chemical formulas for the following compounds:(a) Silver cyanide(b) Calcium hypochlorite(c) Potassium chromate(d) Gallium oxide(e) Potassium superoxide(f) Barium hydrogen carbonatearrow_forward
- Qu) Are The elements sodium, aluminum, and chlorine are in the same period? And give the right answer for the followings (a) Which has the greatest electronegativity? (b) Will the oxide of cach element be acidic, basic, or amphoteric? 4) Why is it possible for an active metal like aluminum to be useful as a structural metal?arrow_forwardQu) Are The elements sodium, aluminum, and chlorine are in the same period? And give the right answer for the followings (a) Which has the greatest electronegativity? (b) Will the oxide of each element be acidie, basic, or amphoteric? 4) Why is it possible for an active metal like aluminum to be useful as a structural metal?arrow_forwardDraw a Lewis structure for each of the following molecules and ions. In each case, the atoms can be connected in only one way. (a) Br2 (b) H2S (c) N2H4 (d) N2H2 (e) CN- (f) NH4+ (g) N2 (h) O2arrow_forward
- Each of the chemically active Period 2 elements forms stable compounds in which it has bonds to fluorine. (a) What are the names and formulas of these compounds? (b) Does ∆EN increase or decrease left to right across the period? (c) Does percent ionic character increase or decrease left to right? (d) Draw Lewis structures for these compoundsarrow_forwardPlease help me!! urgenttttarrow_forward(i) Write the electro-dot structures for sodium, oxygen, and magnesium(ii) Show the formation of Na2O and MgO by the transfer of electrons(iii) What are the ions present in these compounds?arrow_forward
- Use principles of atomic structure to answer each of the following: (1] (a) The radius of the Ca atom is 197 pm; the radius of the Ca2* ion is 99 pm. Account for the difference. (b) The lattice energy of CaO(s) is –3460 kJ/mol; the lattice energy of K20 is –2240 kJ/mol. Account for the difference. (c) Given these ionization values, explain the difference between Ca and K with regard to their first and second ionization energies. Element First lonization Energy (kJ/mol) Second lonization Energy (kJ/mol) K 419 3050 Ca 590 1140 (d) The first ionization energy of Mg is 738 kJ/mol and that of Al is 578 kJ/mol. Account for this difference.arrow_forwardPredict the best choice in each of the following. You may wish to review the chapter on electronic structure for relevant examples.(a) the most metallic of the elements Al, Be, and Ba(b) the most covalent of the compounds NaCl, CaCl2, and BeCl2(c) the lowest first ionization energy among the elements Rb, K, and Li(d) the smallest among Al, Al+, and Al3+(e) the largest among Cs+, Ba2+, and Xearrow_forwardWrite a Lewis structure for each of the following molecules and ions:(a) (CH3)3SiH(b) SiO44−(c) Si2H6(d) Si(OH)4(e) SiF62−arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY