General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.104CHP
Interpretation Introduction
Interpretation:
Whether the silicate hedenbergite,
Concept introduction:
Silicates are the minerals containing silicon and oxygen in tetrahedral
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Geosciences are very versatile. This fact rests on
the finding that the number of silicate minerals
that make up this planet is huge.
a) By means of a reaction sequence based on
Lewis structures show the step-by-step
formation of a tricyclosilicate starting from silicic
acid, Si(OH)4!
b) Explain based on your answer from Part a)
why this already offers the chance to hundreds
of different minerals!
How can you separate alumina (Al2O3) from silica present in bauxite ore? Write the chemical equations for the reactions involved.
Draw a structure consisting of SiO4 units arranged in a chain with each unit sharing two of its oxygen atoms with neighboring SiO4 units. What is this silicate structure named?
Chapter 19 Solutions
General Chemistry: Atoms First
Ch. 19.1 - Prob. 19.1PCh. 19.2 - Prob. 19.2PCh. 19.2 - Prob. 19.3CPCh. 19.4 - Prob. 19.4PCh. 19.7 - Prob. 19.5PCh. 19.8 - Prob. 19.6CPCh. 19.10 - Prob. 19.7PCh. 19.13 - Prob. 19.8CPCh. 19.13 - Prob. 19.9PCh. 19.14 - Prob. 19.10P
Ch. 19 - Prob. 19.11CPCh. 19 - Prob. 19.12CPCh. 19 - Locate the following elements on the periodic...Ch. 19 - Prob. 19.14CPCh. 19 - Prob. 19.15CPCh. 19 - Prob. 19.16CPCh. 19 - Prob. 19.17CPCh. 19 - Prob. 19.18CPCh. 19 - Prob. 19.19CPCh. 19 - Prob. 19.20SPCh. 19 - Prob. 19.21SPCh. 19 - Prob. 19.22SPCh. 19 - Prob. 19.23SPCh. 19 - Prob. 19.24SPCh. 19 - Prob. 19.25SPCh. 19 - Prob. 19.26SPCh. 19 - Prob. 19.27SPCh. 19 - Prob. 19.28SPCh. 19 - Which compound in each of the following pairs is...Ch. 19 - Prob. 19.30SPCh. 19 - Prob. 19.31SPCh. 19 - Prob. 19.32SPCh. 19 - Prob. 19.33SPCh. 19 - Prob. 19.34SPCh. 19 - Prob. 19.35SPCh. 19 - Prob. 19.36SPCh. 19 - Prob. 19.37SPCh. 19 - Prob. 19.38SPCh. 19 - Prob. 19.39SPCh. 19 - Prob. 19.40SPCh. 19 - Prob. 19.41SPCh. 19 - Prob. 19.42SPCh. 19 - Prob. 19.43SPCh. 19 - Prob. 19.44SPCh. 19 - Prob. 19.45SPCh. 19 - Prob. 19.46SPCh. 19 - Prob. 19.47SPCh. 19 - Prob. 19.48SPCh. 19 - Prob. 19.49SPCh. 19 - Prob. 19.50SPCh. 19 - Prob. 19.51SPCh. 19 - Prob. 19.52SPCh. 19 - Prob. 19.53SPCh. 19 - Prob. 19.54SPCh. 19 - Prob. 19.55SPCh. 19 - Prob. 19.56SPCh. 19 - Prob. 19.57SPCh. 19 - Prob. 19.58SPCh. 19 - Prob. 19.59SPCh. 19 - Prob. 19.60SPCh. 19 - Prob. 19.61SPCh. 19 - Prob. 19.62SPCh. 19 - Prob. 19.63SPCh. 19 - Prob. 19.64SPCh. 19 - Prob. 19.65SPCh. 19 - Prob. 19.66SPCh. 19 - Prob. 19.67SPCh. 19 - Prob. 19.68SPCh. 19 - Prob. 19.69SPCh. 19 - Prob. 19.70SPCh. 19 - Draw electron-dot structures for: (a) Nitrous...Ch. 19 - Prob. 19.72SPCh. 19 - Prob. 19.73SPCh. 19 - Prob. 19.74SPCh. 19 - Prob. 19.75SPCh. 19 - Prob. 19.76SPCh. 19 - Prob. 19.77SPCh. 19 - Prob. 19.78SPCh. 19 - Describe the process used for the industrial...Ch. 19 - Prob. 19.80SPCh. 19 - Prob. 19.81SPCh. 19 - Describe the structure of the sulfur molecules in:...Ch. 19 - Prob. 19.83SPCh. 19 - Prob. 19.84SPCh. 19 - Prob. 19.85SPCh. 19 - Describe the contact process for the manufacture...Ch. 19 - Describe a convenient laboratory method for...Ch. 19 - Prob. 19.88SPCh. 19 - Prob. 19.89SPCh. 19 - Prob. 19.90SPCh. 19 - Account for each of the following observations:...Ch. 19 - Prob. 19.92SPCh. 19 - Prob. 19.93SPCh. 19 - Prob. 19.94SPCh. 19 - Prob. 19.95SPCh. 19 - Prob. 19.96SPCh. 19 - Prob. 19.97SPCh. 19 - Prob. 19.98SPCh. 19 - Prob. 19.99SPCh. 19 - Write a balanced net ionic equation for each of...Ch. 19 - Prob. 19.101SPCh. 19 - Prob. 19.102CHPCh. 19 - Prob. 19.103CHPCh. 19 - Prob. 19.104CHPCh. 19 - Prob. 19.105CHPCh. 19 - Prob. 19.106CHPCh. 19 - Prob. 19.107CHPCh. 19 - Prob. 19.108CHPCh. 19 - Prob. 19.109CHPCh. 19 - Prob. 19.110CHPCh. 19 - Prob. 19.111CHPCh. 19 - Prob. 19.112CHPCh. 19 - Prob. 19.113CHPCh. 19 - Which of the group 4A elements have allotropes...Ch. 19 - Prob. 19.115CHPCh. 19 - Prob. 19.116CHPCh. 19 - Prob. 19.117CHPCh. 19 - Prob. 19.118CHPCh. 19 - Prob. 19.119CHPCh. 19 - Prob. 19.120CHPCh. 19 - Prob. 19.121CHPCh. 19 - Prob. 19.122CHPCh. 19 - Prob. 19.123CHPCh. 19 - Prob. 19.124CHPCh. 19 - Prob. 19.125CHPCh. 19 - Prob. 19.126CHPCh. 19 - Give one example from main group chemistry that...Ch. 19 - Prob. 19.128CHPCh. 19 - Prob. 19.129CHPCh. 19 - Prob. 19.130MPCh. 19 - Prob. 19.133MPCh. 19 - Prob. 19.134MP
Knowledge Booster
Similar questions
- The amount of sodium hypochlorite in a bleach solution can be determined by using a given volume of bleach to oxidize excess iodide ion to iodine; ClO- is reduced to Cl-. The amount of iodine produced by the redox reaction is determined by titration with sodium thiosulfate, Na2S2O3; I2 is reduced to I-. The sodium thiosulfate is oxidized to sodium tetrathionate, Na2S4O6. In this analysis, potassium iodide was added in excess to 5.00 mL of bleach (d=1.00g/cm3) . If 25.00 mL of 0.0700 M Na2S2O3 was required to reduce all the iodine produced by the bleach back to iodide, what is the mass percent of NaClO in the bleach?arrow_forward8.96 A business manager wants to provide a wider range of p- and n-type semiconductors as a strategy to enhance sales. You are the lead materials engineer assigned to communicate with this manager. How would you explain why there are more ways to build a p-type semiconductor from silicon than there are ways to build an n-type semiconductor from silicon?arrow_forwardHow many of these elements would be able to bond with the silica tetrahedra SiO4 - molecules? Group of answer choices are A = 4 B = 2 c = 1 Match it to the correct element. Na+ (sodium) Mg2 + (magnesium) Fe 2 + (iron) Fe 3 + (iron) Al 3 + (aluminum) Ca 2 + (calcium) K+ (potassium) |arrow_forward
- Tourmaline is the most colorful of all gemstones. It neutralizes negative forces and offers emotional stability. It is crystalline boron silicates compounded with metals such as Mg, Fe, Al, Na and Li. The three most well-known minerals of tourmaline are: Elbaite Na(LiAl2)Al6Si6O18(BO3)3(OH)4 Schorl Na(Fe3)Al6(BO3)3Si6O18(OH)4 Dravite Na(Mg3)Al6(BO3)3Si6O18(OH)4 On a basis of 1000 kg of tourmaline rocks containing 25% Elbaite, 35% Schorl, 30% Dravite and 10% inerts, calculate the following: a) kg-mol Elbaite b) % by wt BO3 in tourmaline rocksarrow_forwardTourmaline is the most colorful of all gemstones. It neutralizes negative forces and offers emotional stability. It is crystalline boron silicates compounded with metals such as Mg, Fe, Al, Na and Li. The three most well-known minerals of tourmaline are: Elbaite Na(LiAl2)Al6Si6O18(BO3)3(OH)4 Schorl Na(Fe3)Al6(BO3)3Si6O18(OH)4 Dravite Na(Mg3)Al6(BO3)3Si6O18(OH)4 On a basis of 1000 kg of tourmaline rocks containing 25% Elbaite, 35% Schorl, 30% Dravite and 10% inerts, calculate the following: a) kg Fe b) total kg-atom O and kg-mol O2 in the three minerals c) total number of Mg atoms in the rocksarrow_forwardHow are the silica tetrahedrons linked for ZrSiO4? Which class of silicates does this compound belong to?arrow_forward
- (1) Diamond and graphite are two minerals with identical chemical compositions, pure carbon (C). Diamond is the hardest of all minerals, and graphite is one of the softest. If their compositions are identical, why do they have such profound differences in physical properties? (2) silicon and oxygen together make up nearly 75 percent by weight of the Earth's crust. But silicate minerals make up more than 95 percent of the crust. Explain the apparent discrepancy. (3) If you were given a crystal of diamond and another of quartz, how would you tell which is diamond? (4) Would you expect minerais found on the Moon, Mars, or Venus to be different from those of the Earth's crust? Explain your answer. (5) Quartz is Si02. Why does no mineral exist with the composition Si03?arrow_forwardExplain what silica-oxygen tetrahedra are and the different ways they can bond. Individual tetrahedra – Single chain – Double chain – Sheet silicates – Framework silicates -arrow_forward(a) Determine the number of calcium ions in the chemicalformula of the mineral hardystonite, CaxZn(Si2O7). (b)Determine the number of hydroxide ions in the chemicalformula of the mineral pyrophyllite, Al2(Si2O5)2(OH)x.arrow_forward
- Some oxide superconductors adopt a crystal structure similar to that of perovskite (CaTiO3). The unit cell is cubic with a Ti4+ ion in each corner, a Ca2+ ion in the body center, and O2- ions at the midpoint of each edge. (a) Is this unit cell simple, body-centered, or face-centered? (b) If the unit cell edge length is 3.84 Å, what is the density of perovskite (in g/cm3)?arrow_forward2. If a small amount of CaO is added to an otherwise mostly silica glass, what will happen to the (SiO4) tetrahedra in close proximity to calcium cations?arrow_forwardReplacement of aluminum ions in kaolinite with magnesium ions yields a compound with the formula Mg3Si2O5(OH)4. Assign an oxidation state to each element in this compound.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning