Concept explainers
A compound of unknown structure gave the following spectroscopic data:
Mass spectrum: M+=88.1
IR: 3600 cm-1
1ΗNMR: 1.4 δ (2 H, quartet, J=7 Hz); 1.2 δ (6H, singlet): 1.0 δ (1 H, singlet); 0.9 δ (3 H, triplet, J=7 Hz)
13CNMR: 74, 35, 27, 25 δ
(a) Assuming that the compound contains C and H but may or may not contain O, give three possible molecular formulas
(b) How many protons (H) does the compound contain?
(c) What
(d) How many carbons does the compound contain?
(e) What is the molecular formula of the compound?
(f) What is the structure of the compound?
(g) Assign peaks in the molecule’s 1HNMR spectrum corresponding to specific protons.
a) Three molecular formulas possible for the compound are to be given assuming that the compound contains C and H but may or may not contain oxygen.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600 cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
a) Three molecular formulas possible for the compound assuming that the compound contains C and H but may or may not contain oxygen.
Answer to Problem 55AP
a) Three molecular formulas possible for the compound assuming that the compound contains C and H and O are C5H12O, C4H8O2 and C3H4O3.
Explanation of Solution
a) The IR absorption at 3600cm-1 indicates the presence of an alcoholic group in the compound. Hence assuming the compound contains C, H and O, three possible formulas are possible for the compound with molecular mass 88. They are C5H12O, C4H8O2 and C3H4O3.
Three molecular formulas possible for the compound assuming that the compound contains C and H but may or may not contain oxygen are C5H12O, C4H8O2 and C3H4O3.
b) The number of protons in the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600 cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
b) The number of protons in the compound.
Answer to Problem 55AP
b) The compound has 12 protons.
Explanation of Solution
b) IN 1HNMR spectrum contain peaks accounting for the absorption for 12 protons in the molecule.
b) The compound has 12 protons.
c) The functional group(s) present in the compound is/are to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
c) The functional group(s) present in the compound.
Answer to Problem 55AP
c) The functional group in the compound is –OH (alcohol).
Explanation of Solution
c) In 13HNMR only four signals are observed. But 12 protons could not be accommodated on four carbons. At least five carbons are required. This justified by the 1HNMR spectrum which an absorption integrating to six protons present on two equivalent carbons. Hence five carbons are present in the molecule.
c) The functional group in the compound is –OH (alcohol).
d) The number of carbons in the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
d) The number of carbons in the compound.
Answer to Problem 55AP
d) The compound has 5 carbons.
Explanation of Solution
d) Its molecular formula has to be C5H12O as it is a five carbon alcohol with 12 hydrogen atoms.
d) The compound has 5 carbons.
e) Molecular formula of the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
e) Molecular formula of the compound.
Answer to Problem 55AP
e) Molecular formula of the compound is C5H12O.
Explanation of Solution
e) The six proton singlet at 1.2 δ can be attributed to two methyl groups attached to a carbon without any proton. The two proton triplet at 1.4 δ can be assigned to CH2 attached to a methyl which gives a triplet at 0.9 δ. The one proton singlet at 1.0 δ is due to the hydroxyl proton.
e) Molecular formula of the compound is C5H12O.
f) The structure of the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
f) The structure of the compound.
Answer to Problem 55AP
f) The structure of the compound is
Explanation of Solution
f) Thus the structure of the alcohol is
The structure of the compound is
g) The peaks in the 1HNMR of the molecule are to be assigned to specific protons.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To assign:
g) The peaks in the 1HNMR of the molecule to specific protons.
Answer to Problem 55AP
g) 1.2 δ (6H, singlet) given by protons marked as ‘a’.
1.4 δ (2H, quartet, J=7Hz) given by protons marked as ‘b’.
0.9 δ (3H, triplet, J=7Hz) given by protons marked as ‘c’.
1.0 δ (1H, singlet) given by proton marked as‘d’.
Explanation of Solution
g) 1.2 δ (6H, singlet) given by protons marked as ‘a’.
1.4 δ (2H, quartet, J=7Hz) given by protons marked as ‘b’.
0.9 δ (3H, triplet, J=7Hz) given by protons marked as ‘c’.
1.0 δ (1H, singlet) given by proton marked as‘d’.
g) 1.2 δ (6H, singlet) given by protons marked as ‘a’.
1.4 δ (2H, quartet, J=7Hz) given by protons marked as ‘b’.
0.9 δ (3H, triplet, J=7Hz) given by protons marked as ‘c’.
1.0 δ (1H, singlet) given by proton marked as‘d’.
Want to see more full solutions like this?
Chapter 17 Solutions
Organic Chemistry
- Don't used hand raitingarrow_forwardDon't used hand raitingarrow_forwardIf a high molecular weight linear polyethylene is chlorinated by inducing the substitution of chlorine atoms by hydrogen, if 5% of all hydrogen atoms are replaced, what approximate percentage of chlorine by weight would the product have?arrow_forward
- O Macmillan Learning Chemistry: Fundamentals and Principles Davidson presented by Macmillan Learning Poly(ethylene terephthalate), known as PET or industrially as Dacron, is a polyester synthesized through a condensation reaction between two bifunctional monomers. The monomers, ethylene glycol and terepthalic acid, are given. Add bonds and remove atoms as necessary to show the structure of a two repeat unit portion of a longer polymer chain of PET. You may need to zoom out to see the complete structure of all four monomer units. Select Draw / || | C H 0 3 © Templates More ° ° ° || C CC - OH HO OH HOC - C Erase CC OH HO C C 〃 C H₂ Q2Qarrow_forwardc) + H₂Oarrow_forward으 b) + BF. 3 H2Oarrow_forward
- Q4: Draw the product of each Lewis acid-bas reaction. Label the electrophile and nucleophile. b) S + AICI 3 + BF 3arrow_forwardQ1 - What type(s) of bonding would be expected for each of the following materials: solid xenon, calcium fluoride (CaF2), bronze, cadmium telluride (CdTe), rubber, and tungsten? Material solid xenon CaF2 bronze CdTe rubber tungsten Type(s) of bonding Q2- If the atomic radius of lead is 0.175 nm, calculate the volume of its unit cell in cubic meters.arrow_forwardDetermine the atomic packing factor of quartz, knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are 0.038 and 0.117 nm.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning