(a)
Interpretation:
In aqueous solution, methylethylamine exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
(b)
Interpretation:
In aqueous solution, butanamide exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amines are a class of organic compounds. They are derivatives of ammonia. Similar to the nitrogen atom in ammonia, the amine nitrogen also has a lone pair of electrons on it. This means that amines can act as proton acceptors. When an amine is added to water a proton is transferred to the nitrogen atom. The resulting solution is a basic solution. This contains ammonium ions and hydroxide ions.
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
(c)
Interpretation:
In aqueous solution, the given compound exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amines are a class of organic compounds. They are derivatives of ammonia. Similar to the nitrogen atom in ammonia, the amine nitrogen also has a lone pair of electrons on it. This means that amines can act as proton acceptors. When an amine is added to water a proton is transferred to the nitrogen atom. The resulting solution is a basic solution. This contains ammonium ions and hydroxide ions.
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
(d)
Interpretation:
In aqueous solution, the given compound exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amines are a class of organic compounds. They are derivatives of ammonia. Similar to the nitrogen atom in ammonia, the amine nitrogen also has a lone pair of electrons on it. This means that amines can act as proton acceptors. When an amine is added to water a proton is transferred to the nitrogen atom. The resulting solution is a basic solution. This contains ammonium ions and hydroxide ions.
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
General, Organic, and Biological Chemistry
- What is the pH of a solution made by adding 10-2 M sodium benzoate (C6H5COONa) to pure water, taking into account nonideal solute behavior? Benzoate is the conjugate base of benzoic acid (Ka = 6.25×10-5), a common preservative added to food and beverages.arrow_forwardShow work. don't give Ai generated solutionarrow_forwardBriefly explain the existence of Nb-Nb bond in the alpha-NbI4 compound.arrow_forward
- In the case of isopilianions, briefly state:- why polymeric species with a defined MW are formed.- why the extent of polymerization is different depending on the metal.- why these polyhedra with such special structures are formed.arrow_forwardA carboxylic acid reacts with water to form a carboxylate ion and H,O+. Complete the reaction. reaction: (CH),CHCH2COOH + H2O (CH), CHCH, COO¯ + H₂O+ Write the IUPAC name of the carboxylate ion formed in the reaction. IUPAC name: BIU X2 SPECIAL GREEK ALPHABET ~ Iarrow_forwardShow work. Don't give Ai generated solutionarrow_forward
- A solution contains 10-3 M (NH4)2CO3 plus 10-3 M CaCO3. (NH4+: pKa 9.26) a) Follow the four steps and list the species and equations that would have to be solved to determine the equilibrium solution composition. (15 pts) b) Prepare a log C-pH diagram for the solution. Use a full sheet of graph paper, and show the ranges 1≤ pH < 13 and -10≤ log C≤ -1. (10 pts) c) Use the graphical approach for the solution pH. What is the concentration of all species? (15 pts)arrow_forwardKeggin structure.arrow_forwardGiven: N2(g) + 3H2(g)2NH3(g) AG° = 53.8 kJ at 700K. Calculate AG for the above reaction at 700K if the reaction mixture consists of 20.0 atm of N2(g), 30.0 atm of H2(g), and 0.500 atm of NH3(g). A) -26.9 kJ B) 31.1 kJ C) -15.6 kJ D) 26.9 kJ E) -25.5 kJarrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning