
(a)
Interpretation:
The terms that apply for
Concept Introduction:
Free
(b)
Interpretation:
The terms that apply for
Concept Introduction:
Free amine is the one that has nitrogen atom bonded to three other atoms and a lone pair of electrons is present on it. Deprotonated base is the one that can accept a hydrogen ion. Due to the lone pair of electrons present on the nitrogen atom in amine, it can also be known as deprotonated base. Free base is the one that has a more electronegative atom which can act as a proton acceptor. Amine has a nitrogen atom which can accept a hydrogen ion. Hence, amine can be a proton acceptor. Protonated base is the one in which the nitrogen atom in the amine has four bonds. The fourth bond formed is a coordinate covalent bond. The formed species has a positive charge on it.
(c)
Interpretation:
The terms that apply for
Concept Introduction:
Free amine is the one that has nitrogen atom bonded to three other atoms and a lone pair of electrons is present on it. Deprotonated base is the one that can accept a hydrogen ion. Due to the lone pair of electrons present on the nitrogen atom in amine, it can also be known as deprotonated base. Free base is the one that has a more electronegative atom which can act as a proton acceptor. Amine has a nitrogen atom which can accept a hydrogen ion. Hence, amine can be a proton acceptor. Protonated base is the one in which the nitrogen atom in the amine has four bonds. The fourth bond formed is a coordinate covalent bond. The formed species has a positive charge on it.
(d)
Interpretation:
The terms that apply for
Concept Introduction:
Free amine is the one that has nitrogen atom bonded to three other atoms and a lone pair of electrons is present on it. Deprotonated base is the one that can accept a hydrogen ion. Due to the lone pair of electrons present on the nitrogen atom in amine, it can also be known as deprotonated base. Free base is the one that has a more electronegative atom which can act as a proton acceptor. Amine has a nitrogen atom which can accept a hydrogen ion. Hence, amine can be a proton acceptor. Protonated base is the one in which the nitrogen atom in the amine has four bonds. The fourth bond formed is a coordinate covalent bond. The formed species has a positive charge on it.

Want to see the full answer?
Check out a sample textbook solution
Chapter 17 Solutions
General, Organic, and Biological Chemistry
- Please help me answer these three questions. Required info should be in data table.arrow_forwardDraw the major organic substitution product or products for (2R,3S)-2-bromo-3-methylpentane reacting with the given nucleophile. Clearly drawn the stereochemistry, including a wedged bond, a dashed bond and two in-plane bonds at each stereogenic center. Omit any byproducts. Bri CH3CH2O- (conc.) Draw the major organic product or products.arrow_forwardTartaric acid (C4H6O6) is a diprotic weak acid. A sample of 875 mg tartaric acid are dissolved in 100 mL water and titrated with 0.994 M NaOH. How many mL of NaOH are needed to reach the first equivalence point? How many mL of NaOH are needed to reach the second equivalence point?arrow_forward
- Including activity, calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.arrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M KBr.arrow_forwardIncluding activity, calculate the pH of a 0.010 M HCl solution with an ionic strength of 0.10 M.arrow_forward
- Can I please get the graph 1: Concentration vs. Density?arrow_forwardOrder the following series of compounds from highest to lowest reactivity to electrophilic aromatic substitution, explaining your answer: 2-nitrophenol, p-Toluidine, N-(4-methylphenyl)acetamide, 4-methylbenzonitrile, 4-(trifluoromethyl)benzonitrile.arrow_forwardOrdene la siguiente serie de compuestos de mayor a menor reactividad a la sustitución aromática electrofílica, explicando su respuesta: ácido bencenosulfónico, fluorobenceno, etilbenceno, clorobenceno, terc-butilbenceno, acetofenona.arrow_forward
- Can I please get all final concentrations please!arrow_forwardState the detailed mechanism of the reaction of benzene with isopropanol in sulfuric acid.arrow_forwardDo not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction. For the decomposition reaction of N2O5(g): 2 N2O5(g) · 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 -> NO2 + NO3_(K1) NO2 + NO3 →> N2O5 (k-1) → NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Give the expression for the acceptable rate. (A). d[N₂O] dt = -1 2k,k₂[N205] k₁+k₂ d[N₂O5] (B). dt =-k₁[N₂O₂] + k₁[NO2][NO3] - k₂[NO2]³ (C). d[N₂O] dt =-k₁[N₂O] + k₁[N205] - K3 [NO] [N205] (D). d[N2O5] =-k₁[NO] - K3[NO] [N₂05] dtarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




