General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.53SP
Does the pH increase, decrease, or remain the same on the addition of each of the following?
- (a) NH4NO3 to an NH3 solution
- (b) Na2CO3 to an NaHCO3 solution
- (c) NaClO4 to an NaOH solution
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
30. In the reaction
HCl(aq) + H₂O(l) ⇒Cl¯(aq)+ H3O+ (aq)
does water act as a Brønsted-Lowry acid, a Brønsted-Lowry base, or neither, or
both?
(A) Neither as an acid nor as a base; water is neutral
(B) Both an acid and a base.
(C) An acid
(D) A base
(E) Depends temperature
Propionic acid, HC3H5O2, has Ka= 1.34 x 10–5.
(a) What is the molar concentration of H3O+ in 0.15 M HC3H5O2 and the pH of the solution?
(b) What is the Kb value for the propionate ion, C3H5O2–?
(c) Calculate the pH of 0.15 M solution of sodium propionate, NaC3H5O2.
(d) Calculate the pH of solution that contains 0.12 M HC3H5O2 and 0.25 M NaC3H5O2.
The major component of vinegar is acetic acid, CH3COOH. Its Ka is 1.8 × 10-5 . One student used 1.000 M NaOH to titrate 25.00 mL vinegar. At the end point, 21.82 mL NaOH was used.
(a) What is the concentration of CH3COOH in vinegar?
(b) What is the pH of the solution at the end point?
(c) What indicator(s) the student should use in this titration? Explain
Chapter 15 Solutions
General Chemistry: Atoms First
Ch. 15.1 - Write balanced net ionic equations for the...Ch. 15.1 - Write balanced net ionic equations for the...Ch. 15.2 - Calculate the concentrations of all species...Ch. 15.2 - Calculate the pH in a solution prepared by...Ch. 15.2 - Prob. 15.5CPCh. 15.3 - The following pictures represent solutions that...Ch. 15.3 - Calculate the pH of 0.100 L of a buffer solution...Ch. 15.3 - Calculate the change in pH when 0.002 mol of HNO3...Ch. 15.4 - Use the HendersonHasselbalch equation to calculate...Ch. 15.4 - Prob. 15.10P
Ch. 15.4 - Suppose you are performing an experiment that...Ch. 15.4 - Prob. 15.12PCh. 15.6 - A 40.0 mL volume of 0.100 M HCl is titrated with...Ch. 15.6 - A 40.0 mL volume of 0.100 M NaOH is titrated with...Ch. 15.7 - The following pictures represent solutions at...Ch. 15.7 - Consider the titration of 100.0 mL of 0.016 M HOCl...Ch. 15.7 - The following acid-base indicators change color in...Ch. 15.9 - Assume that 40.0 mL of 0.0800 M H2SO3 (Ka1 = 1.5 ...Ch. 15.9 - Assume that 40.0 mL of a 0.0250 M solution of the...Ch. 15.10 - Write the equilibrium-constant expression for Ksp...Ch. 15.11 - A saturated solution of Ca3(PO4)2 has [Ca2+] =...Ch. 15.11 - Prob. 15.22PCh. 15.11 - Which has the greater molar solubility: AgCl with...Ch. 15.11 - Prob. 15.24CPCh. 15.12 - Calculate the molar solubility of MgF2 in 0.10 M...Ch. 15.12 - Which of the following compounds are more soluble...Ch. 15.12 - In an excess of NH3(aq), Cu2+ ion forms a deep...Ch. 15.12 - Silver bromide dissolves in aqueous sodium...Ch. 15.13 - Prob. 15.29PCh. 15.13 - Will a precipitate form on mixing 25 mL of 1.0 ...Ch. 15.14 - Prob. 15.31PCh. 15.15 - Prob. 15.32PCh. 15 - The following pictures represent solutions that...Ch. 15 - The following pictures represent solutions that...Ch. 15 - The strong acid HA is mixed with an equal molar...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - Prob. 15.40CPCh. 15 - Prob. 15.41CPCh. 15 - Prob. 15.42CPCh. 15 - Prob. 15.43CPCh. 15 - Is the pH greater than, equal to, or less than 7...Ch. 15 - Prob. 15.45SPCh. 15 - Which of the following mixtures has the higher pH?...Ch. 15 - Which of the following mixtures has the lower pH?...Ch. 15 - Phenol (C6H5OH, Ka = 1.3 1010) is a weak acid...Ch. 15 - Aniline (C6H5NH2, Kb = 4.3 1010) is a weak base...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - Prob. 15.52SPCh. 15 - Does the pH increase, decrease, or remain the same...Ch. 15 - Prob. 15.54SPCh. 15 - Calculate the pH of a solution prepared by mixing...Ch. 15 - Prob. 15.56SPCh. 15 - The pH of a solution of NH3 and NH4Br is 8.90....Ch. 15 - Prob. 15.58SPCh. 15 - Prob. 15.59SPCh. 15 - Prob. 15.60SPCh. 15 - Which of the following gives a buffer solution...Ch. 15 - Prob. 15.62SPCh. 15 - Prob. 15.63SPCh. 15 - Calculate the pH of a buffer solution that is 0.20...Ch. 15 - Prob. 15.65SPCh. 15 - Calculate the pH of 0.250 L of a 0.36 M formic...Ch. 15 - Calculate the pH of0.375 L of a 0.18 M acetic...Ch. 15 - Prob. 15.68SPCh. 15 - Use the HendersonHasselbalch equation to calculate...Ch. 15 - Prob. 15.70SPCh. 15 - Give a recipe for preparing a CH3CO2HCH3CO2Na...Ch. 15 - Prob. 15.72SPCh. 15 - Prob. 15.73SPCh. 15 - What is the Ka of the amino acid leucine if it is...Ch. 15 - Prob. 15.75SPCh. 15 - Prob. 15.76SPCh. 15 - Make a rough plot of pH versus milliliters of acid...Ch. 15 - Prob. 15.78SPCh. 15 - Consider the titration of 50.0 mL of 0.116 M NaOH...Ch. 15 - Consider the titration of 40.0 mL of 0.250 M HF...Ch. 15 - A 100.0 mL sample of 0.100 M methylamine (CH3NH2,...Ch. 15 - Prob. 15.82SPCh. 15 - Consider the titration of 25.0 mL of 0.0200 M...Ch. 15 - Prob. 15.84SPCh. 15 - The equivalence point was reached in titrations of...Ch. 15 - Prob. 15.86SPCh. 15 - What is the pH at the equivalence point for the...Ch. 15 - Prob. 15.88SPCh. 15 - Prob. 15.89SPCh. 15 - Prob. 15.90SPCh. 15 - Prob. 15.91SPCh. 15 - Prob. 15.92SPCh. 15 - Prob. 15.93SPCh. 15 - Prob. 15.94SPCh. 15 - Prob. 15.95SPCh. 15 - Prob. 15.96SPCh. 15 - Prob. 15.97SPCh. 15 - Use Le Chteliers principle to explain the...Ch. 15 - Use Le Chteliers principle to predict whether the...Ch. 15 - Calculate the molar solubility of PbCrO4 in:...Ch. 15 - Calculate the molar solubility of SrF2 in:...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Prob. 15.104SPCh. 15 - Is the solubility of Fe(OH)3 increased, decreased,...Ch. 15 - Prob. 15.106SPCh. 15 - Prob. 15.107SPCh. 15 - Prob. 15.108SPCh. 15 - Prob. 15.109SPCh. 15 - Calculate the molar solubility of AgI in: (a)Pure...Ch. 15 - Calculate the molar solubility of Cr(OH)3 in 0.50...Ch. 15 - What compound, if any, will precipitate when 80 mL...Ch. 15 - Prob. 15.113SPCh. 15 - Prob. 15.114SPCh. 15 - In qualitative analysis, Al3+ and Mg2+ are...Ch. 15 - Prob. 15.116SPCh. 15 - Can Co2+ be separated from Zn2+ by bubbling H2S...Ch. 15 - Prob. 15.118SPCh. 15 - Prob. 15.119SPCh. 15 - Prob. 15.120SPCh. 15 - Give a method for separating the following pairs...Ch. 15 - Assume that you have three white solids: NaCl,...Ch. 15 - On the same graph, sketch pH titration curves for...Ch. 15 - Prob. 15.124CHPCh. 15 - Prob. 15.125CHPCh. 15 - A saturated solution of Mg(OH)2 in water has pH =...Ch. 15 - Prob. 15.128CHPCh. 15 - In qualitative analysis, Ag+, Hg22+, and Pb2+ are...Ch. 15 - Calculate the molar solubility of MnS in a 0.30 M...Ch. 15 - Prob. 15.131CHPCh. 15 - Prob. 15.132CHPCh. 15 - Prob. 15.133CHPCh. 15 - Prob. 15.134CHPCh. 15 - Prob. 15.135CHPCh. 15 - A 100.0 mL sample of a solution that is 0.100 M in...Ch. 15 - A 0.0100 mol sample of solid Cd(OH)2 (Ksp = 5.3 ...Ch. 15 - Zinc hydroxide, Zn(OH)2 (Ksp = 4.1 1017), is...Ch. 15 - Prob. 15.139CHPCh. 15 - Prob. 15.140MPCh. 15 - Ethylenediamine (NH2CH2CH2NH2, abbreviated en) is...Ch. 15 - A 40.0 mL sample of a mixture of HCl and H3PO4 was...Ch. 15 - A 1.000 L sample of HCl gas at 25 C and 732.0 mm...Ch. 15 - Prob. 15.144MPCh. 15 - Consider the reaction that occurs on mixing 50.0...Ch. 15 - In qualitative analysis, Ca2+ and Ba2+ are...Ch. 15 - A railroad tank car derails and spills 36 tons of...Ch. 15 - Prob. 15.148MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write a balanced molecular equation for the preparation of each of the following salts, using an acidbase neutralization reaction. a. LiNO3 (lithium nitrate) b. BaCl2 (barium chloride) c. K3PO4 (potassium phosphate) d. Na2SO4 (sodium sulfate)arrow_forwardWhich of the following is a strong acid in aqueous solution? (a) Mg(OH)2 (b) NH3 (c) H2SO4 (d) CH3COOH (e) AgClarrow_forwardWhen sodium fluoride (NaF) is added to an HF solution, what happens to the pH of the solution and why? (A) The pH will not change because NaF is an ionic compound that is neither acid nor base. (B) The pH will decrease because F– absorbs H+ and decreasing the H3O+(aq) concentration. (C) The pH will increase because F– absorbs H+ and decreasing the H3O+(aq) concentration. (D) The pH will not change because NaF is a neutral compound.arrow_forward
- Calculate the equilibrium constant for the acid–base reaction between the reactants in each of the following pairs: (a) HCl + H2O (b) CH3COOH + H2O (c) CH3NH2 + H2O (d) CH3N+H3 + H2Oarrow_forward(i) What is the Arrhenius definition of an acid, give an example Why is NH3 considered a base according to Bronsted-Lowry theory?arrow_forwardWhat is the conjugate base of boric acid, B(OH)3? (A) OH– (B) B(OH)4– (C) B(O)(OH)22– (D) B(H2O)(OH)2+arrow_forward
- (a) Calculate the H3O™ concentration in an aqueous solution at 25°C with an OH concentration of 2.00 x 10 2 M. x 10 (b) The value of K at 100°C is 5.13 × 10¯13. Calculate the H20† concentration from the above solution at 100°C. x 10arrow_forwardWrite the chemical reaction that occurs when a 10% NaHCO3 (aq) solution is added to the H3O+ in the blood.arrow_forwardConsider the following acidic equilibrium: H₂CO₃(aq) + H₂O(l) ⇌ HCO₃⁻(aq) + H₃O⁺(aq). If you add NaHCO₃ to this solution, which of the following will occur? A) The reaction quotient will decrease. B) The reaction will shift in the reverse direction. C) The equilibrium constant will increase. D) No changes to the equilibrium positions will take place.arrow_forward
- Ammonium ion, NH4+, is a weak acid and its pKa is 9.25. (a) Write the balance chemical equation showing how ammonium ion acts like a weak acid. (b) What is the pH of a solution when initial concentration of ammonium ion is 0.020 M? (a) (b)arrow_forwardCalcium propionate [Ca(CH₃CH₂COO)₂; calcium pro-panoate] is a mold inhibitor used in food, tobacco, and pharma-ceuticals. (a) Use balanced equations to show whether aqueouscalcium propionate is acidic, basic, or neutral. (b) Find the resulting pH when 8.75 g of Ca(CH₃CH₂COO)₂ dissolves in enough water to give 0.500 L of solution.arrow_forwardHypochlorous acid, HOCl, is a weak acid having a pKa = 7.46. (a) Show the balanced chemical equation for the hydrolysis of water by OCl- (aq). (b) Compute the value of pKb for aqueous hypochlorite ion. (c) If [OCl-] = 0.050 M, then what is the pH of this aqueous solution? (a) (b) (c)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY