Concept explainers
Interpretation:
The molar mass,
Concept Introduction:
Molarity: The concentration for solutions is expressed in terms of molarity as follows,
Important formulas regarding acid-base concepts are:
Acid dissociation constant:
Consider a weak-acid equilibrium reaction,
The acid dissociation constant
A weak acid is one that doesn’t undergo completion.
The negative logarithm of equilibrium constant is called as
The
The value of acid dissociation constant
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
General Chemistry: Atoms First
- Consider the nanoscale-level representations for Question 110 of the titration of the aqueous weak acid HX with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: After a very small volume of titrant has been added to the initial HX solution? When enough titrant has been added to take the solution just past the equivalence point? Halfway to the equivalence point? At the equivalence point? Nanoscale representations for Question 110.arrow_forwardA buffer solution was prepared by adding 4.95 g of sodium acetate, NaCH3CO2, to 2.50 102 mL of 0.150 M acetic acid, CH3CO2H. (a) What is the pH of the buffer? (b) What is the pH of 1.00 102 mL of the buffer solution if you add 82 mg of NaOH to the solution?arrow_forwardAniline hydrochloride, (C6H5NH3)Cl, is a weak acid. (Its conjugate base is the weak base aniline, C6H5NH2.) The acid can be titrated with a strong base such as NaOH. C6H5NH3+(aq)+OH(aq)C6H5NH2(aq)+H2O(l) Assume 50.0 mL of 0.100 M aniline hydrochloride is titrated with 0.185 M NaOH. (Ka for aniline hydrochloride is 2.4 105.) (a) What is the pH of the (C6H5NH3) solution before the titration begins? (b) What is the pH at the equivalence point? (c) What is the pH at the halfway point of the titration? (d) Which indicator in Figure 17.11 could be used to detect the equivalence point? (e) Calculate the pH of the solution after adding 10.0, 20.0, and 30.0 mL of base. (f) Combine the information in parts (a), (b), (c), and (e), and plot an approximate titration curve.arrow_forward
- Phenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forwardThe titration of 0.100 M acetic acid with 0.100 M NaOH is described in the text. What is the pH of the solution when 35.0 mL of the base has been added to 100.0 mL of 0.100 M acetic acid?arrow_forwardThe titration curves for two acids with the same base are shown on this graph. (a) Which is the curve for the weaker acid? Explain your choice. (b) Give the approximate pH at the equivalence point for the titration of each acid. (c) Explain why the pH at the equivalence point differs for each acid. (d) Explain why the starting pH values of the two acids differ. (e) Which indicator or indicators, phenolphthalein, bromthymol blue, or methyl red, could be used for the titration of Acid 1? For the titration of Acid 2? Explain your choices.arrow_forward
- Consider the nanoscale-level representations for Question 111 of the titration of the aqueous strong acid HA with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: (a) After a very small volume of titrant has been added to the initial HA solution? (b) Halfway to the equivalence point? (c) When enough titrant has been added to take the solution just past the equivalence point? (d) At the equivalence point? Nanoscale representations for Question 111.arrow_forwardThe weak base ethanolamine. HOCH2CH2NH2, can be titrated with HCl. HOCH2CH2NH2(aq)+H3O+(aq)HOCH2CH2NH3+(aq)+H2O(l) Assume you have 25.0 mL of a 0.010 M solution of ethanolamine and titrate it with 0.0095 M HCl. (Kb for ethanolamine is 3.2 107.) (a) What is the pH of the ethanolamine solution before the titration begins? (b) What is the pH at the equivalence point? (c) What is the pH at the halfway point of the titration? (d) Which indicator in Figure 17.11 would be the best choice to detect the equivalence point? (e) Calculate the pH of the solution after adding 5.00, 10.0, 20.0, and 30.0 mL of the acid. (f) Combine the information in parts (a), (b), (c), and (e), and plot an approximate titration curve.arrow_forwardA student was required to prepare 250.0 mL of a cyanoacetic acid/sodium cyanoacetate buffer in which the concentration of the weak acid component was 0.06 M and the concentration of the conjugate base was 0.028 M. The student was supplied with 0.512 M cyanoacetic acid and 1.0M NaOH to perform this task. What volume (in mL) of the acid would the student need to prepare this buffer solution? Hint: assume that all of the conjugate base comes directly from the reaction of NaOH with the weak acid (in other words, there is negligible dissociation of the weak acid). Please enter answers with 2 decimal places.arrow_forward
- A student titrated 28.32 ml of a 0.118 M HCl solution with a NaOH solution of unknown concentration. After adding 36.35 ml of NaOH solution, the student realized that she had neglected to add the phenolphthalein indicator solution before starting the titration. When he/she added the phenolphthalein solution, the titration mixture turned bright pink. The student added 4.47 ml of HCl solution to cause the titration mixture to just become colorless. What is the molarity of the NaOH solution? (Put your answer in 3 significant figures)arrow_forwardYou have a 18 mL sample of acetylcholine (a neurotransmitter) with an unknown concentration and a pH of 8.35. You incubate this sample with the enzyme acetylcholinesterase to convert all of the acetylcholine to choline and acetic acid. The acetic acid dissociates to yield acetate and hydrogen ions. At the end of the incubation period, you measure the pH again and find that it has decreased to 6.03. Assuming there was no buffer in the assay mixture, determine the number of nanomoles of acetylcholine in the original 18 mL sample.arrow_forwardUse a primary standard to determine an unknown concentration using an acid-base titration. Potassium hydrogen phthalate is a solid, monoprotic acid frequently used in the laboratory as a primary standard. It has the unwieldy formula of KHC8H404. This is often written in shorthand notation as KHP. If 39.86 mL of a potassium hydroxide solution are needed to neutralize 2.437 grams of KHP, what is the concentration (mol/L) of the potassium hydroxide solution? Marrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning