General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.143MP
A 1.000 L sample of HCl gas at 25 °C and 732.0 mm Hg was absorbed completely in an aqueous solution that contained 6.954 g of Na2CO3 and 250.0 g of water.
(a) What is the pH of the solution?
(b) What is the freezing point of the solution?
(c) What is the vapor pressure of the solution? (The vapor pressure of pure water at 25 °C is 23.76 mm Hg.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) Describe how you would prepare a 500.00 mL portion of 0.25M calcium hydroxide solution starting
with solid calcium hydroxide. (b) What is the pH of the solution?
2) Acetone has a vapor pressure of 183.0 mm Hg at 40 °C and a heat of vaporization of 30.8 kJ/mol. What
is the vapor pressure of acetone at 25 °C?
3) (a) Calculate the molality (m) of a solution containing 75.0 gm of glycol (C2H&O2) in 250.0 gm of water.
(b) What is the mass percent of glycol in this solution?
A 0.018 M solution of salicylic acid, HOC6H4CO2H, has the same pH as 0.0038 M HNO3solution.
(a) Write an equation for the ionization of salicylic acid in aqueous solution. (Assume only the –CO2H portion of the molecule ionizes.)
(b) What is the pH of solution containing 0.018 M salicylic acid?
(c) Calculate the Ka of salicylic acid.
7) An aqueous solution containing 25.0 mg of a hormone in 150.0 mL of solution with an osmotic
pressure at 25 °C of 9.00 mmHg. What is the molecular weight of the hormone?
8) (a) What is the pH of a solution in which 45 mL of 0.10 M sodium hydroxide is added to 25mL of
0.15M hydrochloric acid? (b) A brand of carbonated beverage has a pH of 3.50. Calculate [H*]=?
Chapter 15 Solutions
General Chemistry: Atoms First
Ch. 15.1 - Write balanced net ionic equations for the...Ch. 15.1 - Write balanced net ionic equations for the...Ch. 15.2 - Calculate the concentrations of all species...Ch. 15.2 - Calculate the pH in a solution prepared by...Ch. 15.2 - Prob. 15.5CPCh. 15.3 - The following pictures represent solutions that...Ch. 15.3 - Calculate the pH of 0.100 L of a buffer solution...Ch. 15.3 - Calculate the change in pH when 0.002 mol of HNO3...Ch. 15.4 - Use the HendersonHasselbalch equation to calculate...Ch. 15.4 - Prob. 15.10P
Ch. 15.4 - Suppose you are performing an experiment that...Ch. 15.4 - Prob. 15.12PCh. 15.6 - A 40.0 mL volume of 0.100 M HCl is titrated with...Ch. 15.6 - A 40.0 mL volume of 0.100 M NaOH is titrated with...Ch. 15.7 - The following pictures represent solutions at...Ch. 15.7 - Consider the titration of 100.0 mL of 0.016 M HOCl...Ch. 15.7 - The following acid-base indicators change color in...Ch. 15.9 - Assume that 40.0 mL of 0.0800 M H2SO3 (Ka1 = 1.5 ...Ch. 15.9 - Assume that 40.0 mL of a 0.0250 M solution of the...Ch. 15.10 - Write the equilibrium-constant expression for Ksp...Ch. 15.11 - A saturated solution of Ca3(PO4)2 has [Ca2+] =...Ch. 15.11 - Prob. 15.22PCh. 15.11 - Which has the greater molar solubility: AgCl with...Ch. 15.11 - Prob. 15.24CPCh. 15.12 - Calculate the molar solubility of MgF2 in 0.10 M...Ch. 15.12 - Which of the following compounds are more soluble...Ch. 15.12 - In an excess of NH3(aq), Cu2+ ion forms a deep...Ch. 15.12 - Silver bromide dissolves in aqueous sodium...Ch. 15.13 - Prob. 15.29PCh. 15.13 - Will a precipitate form on mixing 25 mL of 1.0 ...Ch. 15.14 - Prob. 15.31PCh. 15.15 - Prob. 15.32PCh. 15 - The following pictures represent solutions that...Ch. 15 - The following pictures represent solutions that...Ch. 15 - The strong acid HA is mixed with an equal molar...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - Prob. 15.40CPCh. 15 - Prob. 15.41CPCh. 15 - Prob. 15.42CPCh. 15 - Prob. 15.43CPCh. 15 - Is the pH greater than, equal to, or less than 7...Ch. 15 - Prob. 15.45SPCh. 15 - Which of the following mixtures has the higher pH?...Ch. 15 - Which of the following mixtures has the lower pH?...Ch. 15 - Phenol (C6H5OH, Ka = 1.3 1010) is a weak acid...Ch. 15 - Aniline (C6H5NH2, Kb = 4.3 1010) is a weak base...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - Prob. 15.52SPCh. 15 - Does the pH increase, decrease, or remain the same...Ch. 15 - Prob. 15.54SPCh. 15 - Calculate the pH of a solution prepared by mixing...Ch. 15 - Prob. 15.56SPCh. 15 - The pH of a solution of NH3 and NH4Br is 8.90....Ch. 15 - Prob. 15.58SPCh. 15 - Prob. 15.59SPCh. 15 - Prob. 15.60SPCh. 15 - Which of the following gives a buffer solution...Ch. 15 - Prob. 15.62SPCh. 15 - Prob. 15.63SPCh. 15 - Calculate the pH of a buffer solution that is 0.20...Ch. 15 - Prob. 15.65SPCh. 15 - Calculate the pH of 0.250 L of a 0.36 M formic...Ch. 15 - Calculate the pH of0.375 L of a 0.18 M acetic...Ch. 15 - Prob. 15.68SPCh. 15 - Use the HendersonHasselbalch equation to calculate...Ch. 15 - Prob. 15.70SPCh. 15 - Give a recipe for preparing a CH3CO2HCH3CO2Na...Ch. 15 - Prob. 15.72SPCh. 15 - Prob. 15.73SPCh. 15 - What is the Ka of the amino acid leucine if it is...Ch. 15 - Prob. 15.75SPCh. 15 - Prob. 15.76SPCh. 15 - Make a rough plot of pH versus milliliters of acid...Ch. 15 - Prob. 15.78SPCh. 15 - Consider the titration of 50.0 mL of 0.116 M NaOH...Ch. 15 - Consider the titration of 40.0 mL of 0.250 M HF...Ch. 15 - A 100.0 mL sample of 0.100 M methylamine (CH3NH2,...Ch. 15 - Prob. 15.82SPCh. 15 - Consider the titration of 25.0 mL of 0.0200 M...Ch. 15 - Prob. 15.84SPCh. 15 - The equivalence point was reached in titrations of...Ch. 15 - Prob. 15.86SPCh. 15 - What is the pH at the equivalence point for the...Ch. 15 - Prob. 15.88SPCh. 15 - Prob. 15.89SPCh. 15 - Prob. 15.90SPCh. 15 - Prob. 15.91SPCh. 15 - Prob. 15.92SPCh. 15 - Prob. 15.93SPCh. 15 - Prob. 15.94SPCh. 15 - Prob. 15.95SPCh. 15 - Prob. 15.96SPCh. 15 - Prob. 15.97SPCh. 15 - Use Le Chteliers principle to explain the...Ch. 15 - Use Le Chteliers principle to predict whether the...Ch. 15 - Calculate the molar solubility of PbCrO4 in:...Ch. 15 - Calculate the molar solubility of SrF2 in:...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Prob. 15.104SPCh. 15 - Is the solubility of Fe(OH)3 increased, decreased,...Ch. 15 - Prob. 15.106SPCh. 15 - Prob. 15.107SPCh. 15 - Prob. 15.108SPCh. 15 - Prob. 15.109SPCh. 15 - Calculate the molar solubility of AgI in: (a)Pure...Ch. 15 - Calculate the molar solubility of Cr(OH)3 in 0.50...Ch. 15 - What compound, if any, will precipitate when 80 mL...Ch. 15 - Prob. 15.113SPCh. 15 - Prob. 15.114SPCh. 15 - In qualitative analysis, Al3+ and Mg2+ are...Ch. 15 - Prob. 15.116SPCh. 15 - Can Co2+ be separated from Zn2+ by bubbling H2S...Ch. 15 - Prob. 15.118SPCh. 15 - Prob. 15.119SPCh. 15 - Prob. 15.120SPCh. 15 - Give a method for separating the following pairs...Ch. 15 - Assume that you have three white solids: NaCl,...Ch. 15 - On the same graph, sketch pH titration curves for...Ch. 15 - Prob. 15.124CHPCh. 15 - Prob. 15.125CHPCh. 15 - A saturated solution of Mg(OH)2 in water has pH =...Ch. 15 - Prob. 15.128CHPCh. 15 - In qualitative analysis, Ag+, Hg22+, and Pb2+ are...Ch. 15 - Calculate the molar solubility of MnS in a 0.30 M...Ch. 15 - Prob. 15.131CHPCh. 15 - Prob. 15.132CHPCh. 15 - Prob. 15.133CHPCh. 15 - Prob. 15.134CHPCh. 15 - Prob. 15.135CHPCh. 15 - A 100.0 mL sample of a solution that is 0.100 M in...Ch. 15 - A 0.0100 mol sample of solid Cd(OH)2 (Ksp = 5.3 ...Ch. 15 - Zinc hydroxide, Zn(OH)2 (Ksp = 4.1 1017), is...Ch. 15 - Prob. 15.139CHPCh. 15 - Prob. 15.140MPCh. 15 - Ethylenediamine (NH2CH2CH2NH2, abbreviated en) is...Ch. 15 - A 40.0 mL sample of a mixture of HCl and H3PO4 was...Ch. 15 - A 1.000 L sample of HCl gas at 25 C and 732.0 mm...Ch. 15 - Prob. 15.144MPCh. 15 - Consider the reaction that occurs on mixing 50.0...Ch. 15 - In qualitative analysis, Ca2+ and Ba2+ are...Ch. 15 - A railroad tank car derails and spills 36 tons of...Ch. 15 - Prob. 15.148MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What is the freezing point of 0.92 M aqueous acetic acid? The density of this solution is 1.008 g/cm3.arrow_forwardA buffer is prepared by adding 20.0 g of sodium acetate(CH3COONa) to 500 mL of a 0.150 M acetic acid(CH3COOH) solution. (a) Determine the pH of the buffer.(b) Write the complete ionic equation for the reaction thatoccurs when a few drops of hydrochloric acid are added tothe buffer. (c) Write the complete ionic equation for the reactionthat occurs when a few drops of sodium hydroxidesolution are added to the buffer.arrow_forward1. the temperature for each solution is carried out at approximately 297 K where Kw = 1.00 x 10 ^-14 (a) 0.20 g of hydrogen chloride (HCl) is dissolved in water to make 4.5 L of solution. What is the pH of the resulting hydrochloric acid solution? (b) 0.70 g of sodium hydroxide (NaOH) pellets are dissolved in water to make 3.0 L of solution. What is the pH of this solution ?arrow_forward
- Given that Ka's for hydrofluoric acid (HF) and boric acid (H3BO3) are 6.3 x 10-4 and 5.4 x 10-10, respectively, calculate the pH of the following solutions: (a) The mixture from adding 50 mL 0.2 M HF to 50 mL 0.5 M sodium borate (NaH2BO3). (b) The mixture from adding an additional 150 mL 0.2 M HF to the solution in (a), i.e., a total of 200 mL 0.2 M HF was added to 50 mL 0.5 M NaH2BO3.arrow_forwardThe major component of vinegar is acetic acid, CH3COOH. Its Ka is 1.8 × 10-5 . One student used 1.000 M NaOH to titrate 25.00 mL vinegar. At the end point, 21.82 mL NaOH was used. (a) What is the concentration of CH3COOH in vinegar? (b) What is the pH of the solution at the end point? (c) What indicator(s) the student should use in this titration? Explainarrow_forward(a) Calculate the OH¯ concentration in an aqueous solution at 25°C with an H3O™ concentration of 1.03 x 10 M. х 10 M (b) The value of K, at 50°C is 5.48 × 10¬14. Calculate the OH¯ concentration from the above solution at 50°C. x 10arrow_forward
- Propionic acid, HC3H5O2, has Ka= 1.34 x 10–5. (a) What is the molar concentration of H3O+ in 0.15 M HC3H5O2 and the pH of the solution? (b) What is the Kb value for the propionate ion, C3H5O2–? (c) Calculate the pH of 0.15 M solution of sodium propionate, NaC3H5O2. (d) Calculate the pH of solution that contains 0.12 M HC3H5O2 and 0.25 M NaC3H5O2.arrow_forward7 (a) Describe what happens when each of the following molecules is separately dissolved in water and illustrate with an equation in each case: (i) ethanoic acid (CH₂COOH) (ii) ammonia (NH3) (b) Identify the conjugate acids and bases in the substances mentioned in question 7(a) above. (c) Explain the difference between: (i) a strong acid and weak acid and (ii) a strong base and a weak basearrow_forwardChlorobenzene, C6H5Cl, is a key intermediate in the manufacture of dyes and pesticides. It is made by the chlorination of benzene, catalyzed by FeCl3, in this series of steps:(a) Which of the step(s) is (are) Lewis acid-base reactions?(b) Identify the Lewis acids and bases in each of those steps.arrow_forward
- A water solution containing HCN conducts an electric current to a small extent. Write the reaction of hydration of HCN.arrow_forward(7) Calculate the pH of each of the following solutions: (a) 0.1000M Propanoic acid( HC H O,,K=1.3x105) (b) 0.1000M sodium propanoate (Na C HỎ) (c) 0.1000M HC₂H₂O, and 0.1000M Nа С¸¸0₂ 3 5 52 (d) After 0.020 mol of HCl is added to 1.00 L solution of (a) and (b) above. (e) After 0.020 mol of NaOH is added to 1.00 L solution of (a) and (b) above.arrow_forwardA chemist takes 8.579 mL of liquid acetic acid, CH₃COOH (molar mass: 60.052 g/mol) with 1.05 g/mL density and mix it with 12.305 g of solid sodium acetate, CH₃COONa (molar mass: 82.0343g/mol) and prepare an aqueous solution of 1.0 L by adding required amount of water. (Acidity constant of CH₃COOH is 1.8x10⁻⁵) a) What is the pH of such solution?. Single line text.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY