
Concept explainers
(a)
Interpretation:
IUPAC name for the given
Concept Introduction:
For naming an aldehyde in
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl
functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
(b)
Interpretation:
IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
(c)
Interpretation:
IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
(d)
Interpretation:
IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.

Trending nowThis is a popular solution!

Chapter 15 Solutions
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning




