GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
7th Edition
ISBN: 9781305866966
Author: STOKER
Publisher: CENGAGE L
Question
Book Icon
Chapter 15, Problem 15.21EP

(a)

Interpretation Introduction

Interpretation:

Structural formula for the given aldehyde has to be drawn.

Concept Introduction:

Structure of the aldehyde can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In an aldehyde the counting has to be always from the carbonyl carbon that is given the number 1.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  1

(a)

Expert Solution
Check Mark

Answer to Problem 15.21EP

The structural formula for 3-methylpentanal is,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  2

Explanation of Solution

The given name of the compound is 3-methylpentanal.  From the name it is understood that the parent carbon chain is pentane and it contains five carbon atoms.  The parent chain can be drawn as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  3

From the name of the given aldehyde, the substituents that are present can be identified.  In this case, the substituent is a methyl group on third carbon atom.  The first carbon atom has to be the carbonyl carbon atom as the given compound is an aldehyde.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  4

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  5

Conclusion

Structural formula for the given aldehyde is drawn.

(b)

Interpretation Introduction

Interpretation:

Structural formula for the given aldehyde has to be drawn.

Concept Introduction:

Structure of the aldehyde can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In an aldehyde the counting has to be always from the carbonyl carbon that is given the number 1.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  6

(b)

Expert Solution
Check Mark

Answer to Problem 15.21EP

The structural formula for 2-ethylhexanal is,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  7

Explanation of Solution

The given name of the compound is 2-ethylhexanal.  From the name it is understood that the parent carbon chain is hexane and it contains six carbon atoms.  The parent chain can be drawn as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  8

From the name of the given aldehyde, the substituents that are present can be identified.  In this case, the substituent is an ethyl group on second carbon atom.  The first carbon atom has to be the carbonyl carbon atom as the given compound is an aldehyde.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  9

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  10

Conclusion

Structural formula for the given aldehyde is drawn.

(c)

Interpretation Introduction

Interpretation:

Structural formula for the given aldehyde has to be drawn.

Concept Introduction:

Structure of the aldehyde can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In an aldehyde the counting has to be always from the carbonyl carbon that is given the number 1.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  11

(c)

Expert Solution
Check Mark

Answer to Problem 15.21EP

The structural formula for 2,2-dichloropropanal is,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  12

Explanation of Solution

The given name of the compound is 2,2-dichloropropanal.  From the name it is understood that the parent carbon chain is propane and it contains three carbon atoms.  The parent chain can be drawn as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  13

From the name of the given aldehyde, the substituents that are present can be identified.  In this case, the substituents are two chlorine atoms on second carbon atom.  The first carbon atom has to be the carbonyl carbon atom as the given compound is an aldehyde.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  14

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  15

Conclusion

Structural formula for the given aldehyde is drawn.

(d)

Interpretation Introduction

Interpretation:

Structural formula for the given aldehyde has to be drawn.

Concept Introduction:

Structure of the aldehyde can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In an aldehyde the counting has to be always from the carbonyl carbon that is given the number 1.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  16

(d)

Expert Solution
Check Mark

Answer to Problem 15.21EP

The structural formula for 4-hydroxy-2-methyloctanal is,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  17

Explanation of Solution

The given name of the compound is 4-hydroxy-2-methyloctanal.  From the name it is understood that the parent carbon chain is octane and it contains eight carbon atoms.  The parent chain can be drawn as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  18

From the name of the given aldehyde, the substituents that are present can be identified.  In this case, the substituents are a methyl group on second carbon atom and a hydroxyl group on fourth carbon atom.  The first carbon atom has to be the carbonyl carbon atom as the given compound is an aldehyde.

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  19

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP, Chapter 15, Problem 15.21EP , additional homework tip  20

Conclusion

Structural formula for the given aldehyde is drawn.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A complete tensile test was performed on a magnesium specimen of 12 mm diameter and 30 mm length, until breaking. The specimen is assumed to maintain a constant volume. Calculate the approximate value of the actual stress at breaking. TABLE. The tensile force F and the length of the specimen are represented for each L until breaking. F/N L/mm 0 30,0000 30,0296 5000 10000 30,0592 15000 30,0888 20000 30,15 25000 30,51 26500 30,90 27000 31,50 26500 32,10 25000 32,79
None
Differentiate between plastic deformation, elastic deformation, viscoelastic deformation and viscoplastic deformation.

Chapter 15 Solutions

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP

Ch. 15.4 - Prob. 3QQCh. 15.4 - Prob. 4QQCh. 15.4 - Prob. 5QQCh. 15.5 - Prob. 1QQCh. 15.5 - Prob. 2QQCh. 15.5 - Prob. 3QQCh. 15.5 - Prob. 4QQCh. 15.5 - Prob. 5QQCh. 15.6 - Prob. 1QQCh. 15.6 - Prob. 2QQCh. 15.6 - Prob. 3QQCh. 15.7 - Prob. 1QQCh. 15.7 - Prob. 2QQCh. 15.8 - Prob. 1QQCh. 15.8 - Prob. 2QQCh. 15.9 - Prob. 1QQCh. 15.9 - Prob. 2QQCh. 15.10 - Prob. 1QQCh. 15.10 - Prob. 2QQCh. 15.10 - Prob. 3QQCh. 15.10 - Prob. 4QQCh. 15.11 - Prob. 1QQCh. 15.11 - Prob. 2QQCh. 15.11 - Prob. 3QQCh. 15.11 - Prob. 4QQCh. 15.11 - Prob. 5QQCh. 15.12 - Prob. 1QQCh. 15.12 - Prob. 2QQCh. 15 - Prob. 15.1EPCh. 15 - Prob. 15.2EPCh. 15 - Prob. 15.3EPCh. 15 - In terms of polarity, which carbonyl group atom...Ch. 15 - Prob. 15.5EPCh. 15 - What is the geometrical arrangement for the atoms...Ch. 15 - Prob. 15.7EPCh. 15 - Prob. 15.8EPCh. 15 - Prob. 15.9EPCh. 15 - Prob. 15.10EPCh. 15 - Prob. 15.11EPCh. 15 - Classify each of the following structures as an...Ch. 15 - Prob. 15.13EPCh. 15 - Prob. 15.14EPCh. 15 - Prob. 15.15EPCh. 15 - Prob. 15.16EPCh. 15 - Prob. 15.17EPCh. 15 - Prob. 15.18EPCh. 15 - Prob. 15.19EPCh. 15 - Prob. 15.20EPCh. 15 - Prob. 15.21EPCh. 15 - Prob. 15.22EPCh. 15 - Prob. 15.23EPCh. 15 - Prob. 15.24EPCh. 15 - Prob. 15.25EPCh. 15 - Prob. 15.26EPCh. 15 - Prob. 15.27EPCh. 15 - Prob. 15.28EPCh. 15 - Prob. 15.29EPCh. 15 - Prob. 15.30EPCh. 15 - Prob. 15.31EPCh. 15 - Prob. 15.32EPCh. 15 - Prob. 15.33EPCh. 15 - Prob. 15.34EPCh. 15 - Prob. 15.35EPCh. 15 - Prob. 15.36EPCh. 15 - Prob. 15.37EPCh. 15 - Prob. 15.38EPCh. 15 - Prob. 15.39EPCh. 15 - Prob. 15.40EPCh. 15 - Draw a structural formula for each of the...Ch. 15 - Prob. 15.42EPCh. 15 - Prob. 15.43EPCh. 15 - Prob. 15.44EPCh. 15 - Prob. 15.45EPCh. 15 - Prob. 15.46EPCh. 15 - Prob. 15.47EPCh. 15 - Prob. 15.48EPCh. 15 - Prob. 15.49EPCh. 15 - Prob. 15.50EPCh. 15 - Prob. 15.51EPCh. 15 - Prob. 15.52EPCh. 15 - Prob. 15.53EPCh. 15 - Prob. 15.54EPCh. 15 - Prob. 15.55EPCh. 15 - Prob. 15.56EPCh. 15 - Prob. 15.57EPCh. 15 - Prob. 15.58EPCh. 15 - Prob. 15.59EPCh. 15 - Prob. 15.60EPCh. 15 - Prob. 15.61EPCh. 15 - Prob. 15.62EPCh. 15 - Prob. 15.63EPCh. 15 - Prob. 15.64EPCh. 15 - Prob. 15.65EPCh. 15 - Prob. 15.66EPCh. 15 - Prob. 15.67EPCh. 15 - Which member in each of the following pairs of...Ch. 15 - Prob. 15.69EPCh. 15 - Prob. 15.70EPCh. 15 - Prob. 15.71EPCh. 15 - Prob. 15.72EPCh. 15 - Prob. 15.73EPCh. 15 - Prob. 15.74EPCh. 15 - Prob. 15.75EPCh. 15 - Prob. 15.76EPCh. 15 - Prob. 15.77EPCh. 15 - Prob. 15.78EPCh. 15 - Prob. 15.79EPCh. 15 - What is the chemical formula of the inorganic...Ch. 15 - Prob. 15.81EPCh. 15 - Which of the following compounds would react with...Ch. 15 - Prob. 15.83EPCh. 15 - Prob. 15.84EPCh. 15 - Which of the three compounds pentanal,...Ch. 15 - Prob. 15.86EPCh. 15 - Prob. 15.87EPCh. 15 - Prob. 15.88EPCh. 15 - Prob. 15.89EPCh. 15 - Prob. 15.90EPCh. 15 - Prob. 15.91EPCh. 15 - Prob. 15.92EPCh. 15 - Which carbon atom is the hemiacetal carbon atom in...Ch. 15 - Prob. 15.94EPCh. 15 - Prob. 15.95EPCh. 15 - Prob. 15.96EPCh. 15 - Prob. 15.97EPCh. 15 - Prob. 15.98EPCh. 15 - Prob. 15.99EPCh. 15 - Prob. 15.100EPCh. 15 - Prob. 15.101EPCh. 15 - Prob. 15.102EPCh. 15 - Prob. 15.103EPCh. 15 - Prob. 15.104EPCh. 15 - Prob. 15.105EPCh. 15 - Prob. 15.106EPCh. 15 - Prob. 15.107EPCh. 15 - Prob. 15.108EPCh. 15 - Prob. 15.109EPCh. 15 - Prob. 15.110EPCh. 15 - Prob. 15.111EPCh. 15 - Prob. 15.112EPCh. 15 - Prob. 15.113EPCh. 15 - Prob. 15.114EPCh. 15 - Prob. 15.115EPCh. 15 - Prob. 15.116EPCh. 15 - Prob. 15.117EPCh. 15 - Prob. 15.118EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning