General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 13.106CHP
Refining petroleum involves cracking large hydrocarbon molecules into smaller, more volatile pieces. A simple example of hydrocarbon cracking is the gas-phase thermal decomposition of butane to give ethane and ethylene:
- (a) Write the equilibrium-constant expressions for Kp and Kc.
- (b) The value of Kp at 500°C is 12. What is the value of Kc?
- (c) A sample of butane having a pressure of 50 atm is heated at 500°C in a closed container at constant volume. When equilibrium is reached, what percentage of the butane has been converted to ethane and ethylene? What is the total pressure at equilibrium?
- (d) How would the percent conversion in part (c) be affected by a decrease in volume.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
General Chemistry: Atoms First
Ch. 13.2 - The oxidation of sulfur dioxide to give sulfur...Ch. 13.2 - The following equilibrium concentrations were...Ch. 13.2 - Prob. 13.3PCh. 13.2 - The following pictures represent mixtures that...Ch. 13.3 - Prob. 13.5PCh. 13.4 - In the industrial synthesis of hydrogen, mixtures...Ch. 13.4 - Prob. 13.7PCh. 13.5 - Prob. 13.8PCh. 13.6 - Prob. 13.9PCh. 13.6 - Prob. 13.10P
Ch. 13.6 - Prob. 13.11CPCh. 13.6 - Prob. 13.12PCh. 13.6 - Prob. 13.13PCh. 13.6 - Prob. 13.14PCh. 13.6 - Prob. 13.15PCh. 13.6 - Prob. 13.16PCh. 13.8 - Prob. 13.17PCh. 13.9 - Prob. 13.18PCh. 13.9 - Prob. 13.19CPCh. 13.10 - Prob. 13.20PCh. 13.10 - Prob. 13.21PCh. 13.10 - Prob. 13.22CPCh. 13.11 - Prob. 13.23PCh. 13.11 - Prob. 13.24PCh. 13.11 - Prob. 13.25PCh. 13 - Consider the interconversion of A molecules (red...Ch. 13 - Prob. 13.27CPCh. 13 - Prob. 13.28CPCh. 13 - Prob. 13.29CPCh. 13 - Prob. 13.30CPCh. 13 - Prob. 13.31CPCh. 13 - Prob. 13.32CPCh. 13 - Prob. 13.33CPCh. 13 - Prob. 13.34CPCh. 13 - Prob. 13.35CPCh. 13 - Prob. 13.36CPCh. 13 - The following pictures represent the initial and...Ch. 13 - Prob. 13.38SPCh. 13 - Prob. 13.39SPCh. 13 - Prob. 13.40SPCh. 13 - Prob. 13.41SPCh. 13 - Prob. 13.42SPCh. 13 - Prob. 13.43SPCh. 13 - Prob. 13.44SPCh. 13 - Prob. 13.45SPCh. 13 - Prob. 13.46SPCh. 13 - Prob. 13.47SPCh. 13 - Prob. 13.48SPCh. 13 - Prob. 13.49SPCh. 13 - Prob. 13.50SPCh. 13 - Prob. 13.51SPCh. 13 - Prob. 13.52SPCh. 13 - Prob. 13.53SPCh. 13 - Prob. 13.54SPCh. 13 - Prob. 13.55SPCh. 13 - Prob. 13.56SPCh. 13 - Prob. 13.57SPCh. 13 - Prob. 13.58SPCh. 13 - Prob. 13.59SPCh. 13 - Prob. 13.60SPCh. 13 - Prob. 13.61SPCh. 13 - Prob. 13.62SPCh. 13 - Prob. 13.63SPCh. 13 - Prob. 13.64SPCh. 13 - Prob. 13.65SPCh. 13 - Prob. 13.66SPCh. 13 - Prob. 13.67SPCh. 13 - Prob. 13.68SPCh. 13 - Prob. 13.69SPCh. 13 - Prob. 13.70SPCh. 13 - Prob. 13.71SPCh. 13 - Prob. 13.72SPCh. 13 - Prob. 13.73SPCh. 13 - Gaseous indium dihydride is formed from the...Ch. 13 - Prob. 13.75SPCh. 13 - Prob. 13.76SPCh. 13 - Prob. 13.77SPCh. 13 - Prob. 13.78SPCh. 13 - Prob. 13.79SPCh. 13 - Prob. 13.80SPCh. 13 - Prob. 13.81SPCh. 13 - The value of Kc for the reaction of acetic acid...Ch. 13 - In a basic aqueous solution, chloromethane...Ch. 13 - Prob. 13.84SPCh. 13 - Prob. 13.85SPCh. 13 - Prob. 13.86SPCh. 13 - Prob. 13.87SPCh. 13 - Prob. 13.88SPCh. 13 - Prob. 13.89SPCh. 13 - Prob. 13.90SPCh. 13 - Prob. 13.91SPCh. 13 - Prob. 13.92SPCh. 13 - Consider the endothermic reaction Fe3+ (aq) + Cl...Ch. 13 - Prob. 13.94SPCh. 13 - Prob. 13.95SPCh. 13 - Prob. 13.96SPCh. 13 - Prob. 13.97SPCh. 13 - Prob. 13.98CHPCh. 13 - Prob. 13.99CHPCh. 13 - Prob. 13.100CHPCh. 13 - Prob. 13.101CHPCh. 13 - Prob. 13.102CHPCh. 13 - Prob. 13.103CHPCh. 13 - Prob. 13.104CHPCh. 13 - Prob. 13.105CHPCh. 13 - Refining petroleum involves cracking large...Ch. 13 - Prob. 13.107CHPCh. 13 - Prob. 13.108CHPCh. 13 - Prob. 13.109CHPCh. 13 - Prob. 13.110CHPCh. 13 - At 1000 K, Kp = 2.1 106 and H = 107.7 kJ for the...Ch. 13 - Consider the gas-phase decomposition of NOBr: 2...Ch. 13 - At 100C, Kc = 4.72 for the reaction 2 NO2(g) ...Ch. 13 - Prob. 13.114CHPCh. 13 - Prob. 13.115CHPCh. 13 - Prob. 13.116CHPCh. 13 - Prob. 13.117CHPCh. 13 - Prob. 13.118CHPCh. 13 - Prob. 13.119CHPCh. 13 - Prob. 13.120CHPCh. 13 - Prob. 13.121CHPCh. 13 - Prob. 13.122CHPCh. 13 - Prob. 13.123CHPCh. 13 - Prob. 13.124CHPCh. 13 - Prob. 13.125MPCh. 13 - Prob. 13.126MPCh. 13 - The equilibrium constant Kc for the gas-phase...Ch. 13 - Prob. 13.128MPCh. 13 - Prob. 13.129MPCh. 13 - Prob. 13.130MPCh. 13 - Prob. 13.131MPCh. 13 - Prob. 13.132MPCh. 13 - Consider the sublimation of mothballs at 27C in a...Ch. 13 - Prob. 13.134MPCh. 13 - Prob. 13.135MPCh. 13 - For the decomposition reaction PCl5(g) PCl3(g) +...Ch. 13 - Prob. 13.137MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the following system at equilibrium at 25C: PCl3(g)+Cl(g)PCl5(g)G=92.50KJ What will happen to the ratio of partial pressure of PCl5 to partial pressure of PCI3 if the temperature is raised? Explain completely.arrow_forwardThe equilibrium constant for the butane iso-butane equilibrium at 25 C is 2.50. Calculate rG at this temperature in units of kJ/mol.arrow_forwardCalculate K for the formation of methyl alcohol at 100C: CO(g)+2H2(g)CH3OH(g) given that at equilibrium, the partial pressures of the gases are PCO=0.814 atm, PH2=0.274 atm, and PCH3OH=0.0512 atm.arrow_forward
- Sulfur oxychloride, SO2Cl2, decomposes to sulfur dioxide and chlorine gases. SO2Cl2(g)SO2(g)+Cl2(g) At a certain temperature, the equilibrium partial pressures of SO2, Cl2, and SO2Cl2 are 1.88 atm, 0.84 atm, and 0.27 atm, respectively. (a) What is K at that temperature? (b) Enough Cl2 condenses to reduce its partial pressure to 0.68 atm. What are the partial pressures of all gases when equilibrium is reestablished?arrow_forwardFor the reaction C(s)+CO2(g)2CO(g) K=168 at 1273 K. If one starts with 0.3 atm of CO2 and 12.0 g of C at 1273 K, will the equilibrium mixture contain (a) mostly CO2? (b) mostly CO? (c) roughly equal amounts of CO2 and CO? (d) only C?arrow_forwardThe equilibrium constant Kc for the synthesis of methanol, CH3OH. CO(g)+2H2(g)CH3OH(g) is 4.3 at 250C and 1.8 at 275C. Is this reaction endothermic or exothermic?arrow_forward
- If wet silver carbonate is dried in a stream of hot air. the air must have a certain concentration level of carbon dioxide to prevent silver carbonate from decomposing by the reaction Ag2CO3(s)Ag2O(s)+CO2(g) H for this reaction is 79.14 kJ/mol in the temperature range of 25 to 125C. Given that the partial pressure of carbon dioxide in equilibrium with pure solid silver carbonate is 6.23 103 torr at 25C, calculate the partial pressure of CO2 necessary to prevent decomposition ofAg2CO3 at 110C. (Hint: Manipulate the equation in Exercise 79.)arrow_forwardMethanol can be synthesized by means of the equilibriumreaction CO(g)+2H2(g)CH3OH(g) for which the equilibrium constant at 225°C is 6.08103. Assume that the ratio of the pressures of CO(g) and H2(g) is 1:2. What values should they have if the partial pressureof methanol is to be 0.500 atm?arrow_forwardThe reaction, 3 H2(g) + N2(g) (g), has the fol lowing equilibrium constants at the temperatures given: atT=25°C,K= 2.8 X 104 at T = 500°C, A = 2.4 X IO"7 At which temperature are reactants favored? At which temperature are products favored? YVhat can you say about the reaction if the equilibrium constant is 1.2 at 127°C?arrow_forward
- What is the approximate value of the equilibrium constant KP for the change C2H5OC2H5(l)C2H5OC2H5(g) at 25 C. {Vapor pressure was described in the previous Chapter on liquids and solids; refer back to this chapter to find the relevant information needed to solve this problem.)arrow_forwardFor the system SO3(g)SO2(g)+12 O2(g)at 1000 K, K=0.45. Sulfur trioxide, originally at 1.00 atm pressure, partially dissociates to SO2 and O2 at 1000 K. What is its partial pressure at equilibrium?arrow_forwardAt 500C, k for the for the formation of ammonia from nitrogen and hydrogen gases is 1.5105. N2(g)+3H2(g)2NH3(g)Calculate the equilibrium partial pressure of hydrogen if the equilibrium partial pressures of ammonia and nitrogen are 0.015 atm and 1.2 atm, respectively.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY