General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 13.30CP
Interpretation Introduction
Interpretation:
From the given figure, the direction of reaction has to be predicted.
Concept introduction:
Le Chatelier's principle states that if a system in equilibrium gets disturbed due to modification of concentration, temperature, volume, and pressure, then it reset to counteract the effect of disturbance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
General Chemistry: Atoms First
Ch. 13.2 - The oxidation of sulfur dioxide to give sulfur...Ch. 13.2 - The following equilibrium concentrations were...Ch. 13.2 - Prob. 13.3PCh. 13.2 - The following pictures represent mixtures that...Ch. 13.3 - Prob. 13.5PCh. 13.4 - In the industrial synthesis of hydrogen, mixtures...Ch. 13.4 - Prob. 13.7PCh. 13.5 - Prob. 13.8PCh. 13.6 - Prob. 13.9PCh. 13.6 - Prob. 13.10P
Ch. 13.6 - Prob. 13.11CPCh. 13.6 - Prob. 13.12PCh. 13.6 - Prob. 13.13PCh. 13.6 - Prob. 13.14PCh. 13.6 - Prob. 13.15PCh. 13.6 - Prob. 13.16PCh. 13.8 - Prob. 13.17PCh. 13.9 - Prob. 13.18PCh. 13.9 - Prob. 13.19CPCh. 13.10 - Prob. 13.20PCh. 13.10 - Prob. 13.21PCh. 13.10 - Prob. 13.22CPCh. 13.11 - Prob. 13.23PCh. 13.11 - Prob. 13.24PCh. 13.11 - Prob. 13.25PCh. 13 - Consider the interconversion of A molecules (red...Ch. 13 - Prob. 13.27CPCh. 13 - Prob. 13.28CPCh. 13 - Prob. 13.29CPCh. 13 - Prob. 13.30CPCh. 13 - Prob. 13.31CPCh. 13 - Prob. 13.32CPCh. 13 - Prob. 13.33CPCh. 13 - Prob. 13.34CPCh. 13 - Prob. 13.35CPCh. 13 - Prob. 13.36CPCh. 13 - The following pictures represent the initial and...Ch. 13 - Prob. 13.38SPCh. 13 - Prob. 13.39SPCh. 13 - Prob. 13.40SPCh. 13 - Prob. 13.41SPCh. 13 - Prob. 13.42SPCh. 13 - Prob. 13.43SPCh. 13 - Prob. 13.44SPCh. 13 - Prob. 13.45SPCh. 13 - Prob. 13.46SPCh. 13 - Prob. 13.47SPCh. 13 - Prob. 13.48SPCh. 13 - Prob. 13.49SPCh. 13 - Prob. 13.50SPCh. 13 - Prob. 13.51SPCh. 13 - Prob. 13.52SPCh. 13 - Prob. 13.53SPCh. 13 - Prob. 13.54SPCh. 13 - Prob. 13.55SPCh. 13 - Prob. 13.56SPCh. 13 - Prob. 13.57SPCh. 13 - Prob. 13.58SPCh. 13 - Prob. 13.59SPCh. 13 - Prob. 13.60SPCh. 13 - Prob. 13.61SPCh. 13 - Prob. 13.62SPCh. 13 - Prob. 13.63SPCh. 13 - Prob. 13.64SPCh. 13 - Prob. 13.65SPCh. 13 - Prob. 13.66SPCh. 13 - Prob. 13.67SPCh. 13 - Prob. 13.68SPCh. 13 - Prob. 13.69SPCh. 13 - Prob. 13.70SPCh. 13 - Prob. 13.71SPCh. 13 - Prob. 13.72SPCh. 13 - Prob. 13.73SPCh. 13 - Gaseous indium dihydride is formed from the...Ch. 13 - Prob. 13.75SPCh. 13 - Prob. 13.76SPCh. 13 - Prob. 13.77SPCh. 13 - Prob. 13.78SPCh. 13 - Prob. 13.79SPCh. 13 - Prob. 13.80SPCh. 13 - Prob. 13.81SPCh. 13 - The value of Kc for the reaction of acetic acid...Ch. 13 - In a basic aqueous solution, chloromethane...Ch. 13 - Prob. 13.84SPCh. 13 - Prob. 13.85SPCh. 13 - Prob. 13.86SPCh. 13 - Prob. 13.87SPCh. 13 - Prob. 13.88SPCh. 13 - Prob. 13.89SPCh. 13 - Prob. 13.90SPCh. 13 - Prob. 13.91SPCh. 13 - Prob. 13.92SPCh. 13 - Consider the endothermic reaction Fe3+ (aq) + Cl...Ch. 13 - Prob. 13.94SPCh. 13 - Prob. 13.95SPCh. 13 - Prob. 13.96SPCh. 13 - Prob. 13.97SPCh. 13 - Prob. 13.98CHPCh. 13 - Prob. 13.99CHPCh. 13 - Prob. 13.100CHPCh. 13 - Prob. 13.101CHPCh. 13 - Prob. 13.102CHPCh. 13 - Prob. 13.103CHPCh. 13 - Prob. 13.104CHPCh. 13 - Prob. 13.105CHPCh. 13 - Refining petroleum involves cracking large...Ch. 13 - Prob. 13.107CHPCh. 13 - Prob. 13.108CHPCh. 13 - Prob. 13.109CHPCh. 13 - Prob. 13.110CHPCh. 13 - At 1000 K, Kp = 2.1 106 and H = 107.7 kJ for the...Ch. 13 - Consider the gas-phase decomposition of NOBr: 2...Ch. 13 - At 100C, Kc = 4.72 for the reaction 2 NO2(g) ...Ch. 13 - Prob. 13.114CHPCh. 13 - Prob. 13.115CHPCh. 13 - Prob. 13.116CHPCh. 13 - Prob. 13.117CHPCh. 13 - Prob. 13.118CHPCh. 13 - Prob. 13.119CHPCh. 13 - Prob. 13.120CHPCh. 13 - Prob. 13.121CHPCh. 13 - Prob. 13.122CHPCh. 13 - Prob. 13.123CHPCh. 13 - Prob. 13.124CHPCh. 13 - Prob. 13.125MPCh. 13 - Prob. 13.126MPCh. 13 - The equilibrium constant Kc for the gas-phase...Ch. 13 - Prob. 13.128MPCh. 13 - Prob. 13.129MPCh. 13 - Prob. 13.130MPCh. 13 - Prob. 13.131MPCh. 13 - Prob. 13.132MPCh. 13 - Consider the sublimation of mothballs at 27C in a...Ch. 13 - Prob. 13.134MPCh. 13 - Prob. 13.135MPCh. 13 - For the decomposition reaction PCl5(g) PCl3(g) +...Ch. 13 - Prob. 13.137MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- At 2300 K the equilibrium constant for the formation of NO(g) is 1.7 103. N2(g) + O2(g) 2 NO(g) (a) Analysis shows that the concentrations of N2 and O2 are both 0.25 M, and that of NO is 0.0042 M under certain conditions. Is the system at equilibrium? (b) If the system is not at equilibrium, in which direction does the reaction proceed? (c) When the system is at equilibrium, what are the equilibrium concentrations?arrow_forwardConsider 0.200 mol phosphorus pentachloride sealed in a 2.0-L container at 620 K. The equilibrium constant, Kc, is 0.60 for PCl5(g) PCl3(g) + Cl2(g) Calculate the concentrations of all species after equilibrium has been reached.arrow_forward12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forward
- At room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forwardFor the reactionH2(g)+I2(g)2HI(g), consider two possibilities: (a) you mix 0.5 mole of each reactant. allow the system to come to equilibrium, and then add another mole of H2 and allow the system to reach equilibrium again. or (b) you mix 1.5 moles of H2 and 0.5 mole of I2 and allow the system to reach equilibrium. Will the final equilibrium mixture be different for the two procedures? Explain.arrow_forwardFor the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forward
- What is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forward. For the reaction 3O2(g)2O3(g)The equilibrium constant, K, has the value 1.121054at a particular temperature. a. What does the very small equilibrium constant indicate about the extent to which oxygen gas, O2(g), is converted to ozone gas, O3(g), at this temperature? b. If the equilibrium mixture is analyzed and [O2(g)]is found to be 3.04102M, what is the concentration of O3(g) in the mixture’?arrow_forwardTwo molecules of A react to form one molecule of B, as in the reaction 2 A(g) B(g) Three experiments are done at different temperatures and equilibrium concentrations are measured. For each experiment, calculate the equilibrium constant, Kc. (a) [A] = 0.74 mol/L, [B] = 0.74 mol/L (b) [A] = 2.0 mol/L, [B] = 2.0 mol/L (c) [A] = 0.01 mol/L, [B] = 0.01 mol/L What can you conclude about this statement: If the concentrations of reactants and products are equal, then the equilibrium constant is always 1.0.arrow_forward
- Consider the reaction N2O4(g)2NO2(g). Draw a graph illustrating the changes of concentrations of N2O4 and NO2 as equilibrium is approached. Describe how the rates of the forward and reverse reactions change as the mixture approaches dynamic equilibrium. Why is this called a dynamic equilibrium?arrow_forwardConsider the following equilibrium: COBr2(g) CO(g) + Br2(g)Kc = 0.190 at 73 C (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species. (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.) (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?arrow_forwardAn equilibrium involving the carbonate and bicarbonate ions exists in natural waters: HCO5_(aq) «=* H+(aq) + COf-(aq) Assuming that the reactions in both directions are elementary' processes: Write rate expressions for the forward and reverse reactions. Write an expression for the equilibrium constant based on the rates of the forward and reverse reactions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY