General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.104CHP

(a)

Interpretation Introduction

Interpretation:

The equilibrium constant values KcandKp has to be calculated.

Concept introduction:

Equilibrium constant(Kc):

Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.

Consider the reaction where A reacts to give B.

aAbB

Rate of forward reaction = Rate of reverse reactionkf[A]a=kr[B]b

On rearranging,

[B]b[A]a=kfkr=Kc

Where,

kf is the rate constant of the forward reaction.

kr is the rate constant of the reverse reaction.

Kc is the equilibrium constant.

Equilibrium constant(Kp):

In gas phase reactions, partial pressure is used to write equilibrium equation than molar concentration. Equilibrium constant (Kp) is defined as ratio of partial pressure of products to partial pressure of reactants. Each partial pressure term is raised to a power, which is same as the coefficients in the chemical reaction

Consider the reaction where A reacts to give B.

aAbB

Rate of forward reaction = Rate of reverse reactionkfPAa=krPBa

On rearranging,

PBbPAa=kfkr=Kp

Where,

kf is the rate constant of the forward reaction.

kr is the rate constant of the reverse reaction.

Kp is the equilibrium constant.

The pressure of each species of ideal gas and its molar concentration are directly proportional to each other.

PAV = nARTPA = nAVRT=[A]RT

In same way PB =[B]RT. Thus, equilibrium constant Kp is given as

Kp=[B]b[A]a×(RT)b-aKp = Kc(RT)Δn

Where,

R is gas constant

T is absolute temperature

Δn is difference in moles of products to reactants in gas phase.

(b)

Interpretation Introduction

Interpretation:

The flow of direction of reaction to reach equilibrium and equilibrium molar concentrations of PCl5, PCl3, and Cl2 in given reaction have to be determined.

Concept introduction:

Calculation of equilibrium concentration from initial concentration:

  • The balanced equation for given reaction has to be written.
  • Set up an equilibrium table to calculate x value
  • The value of x is solved by substituting concentrations of chemical species in equilibrium constant expression.
  • The concentration of chemical species at equilibrium is calculated from value of x

Blurred answer

Chapter 13 Solutions

General Chemistry: Atoms First

Ch. 13.6 - Prob. 13.11CPCh. 13.6 - Prob. 13.12PCh. 13.6 - Prob. 13.13PCh. 13.6 - Prob. 13.14PCh. 13.6 - Prob. 13.15PCh. 13.6 - Prob. 13.16PCh. 13.8 - Prob. 13.17PCh. 13.9 - Prob. 13.18PCh. 13.9 - Prob. 13.19CPCh. 13.10 - Prob. 13.20PCh. 13.10 - Prob. 13.21PCh. 13.10 - Prob. 13.22CPCh. 13.11 - Prob. 13.23PCh. 13.11 - Prob. 13.24PCh. 13.11 - Prob. 13.25PCh. 13 - Consider the interconversion of A molecules (red...Ch. 13 - Prob. 13.27CPCh. 13 - Prob. 13.28CPCh. 13 - Prob. 13.29CPCh. 13 - Prob. 13.30CPCh. 13 - Prob. 13.31CPCh. 13 - Prob. 13.32CPCh. 13 - Prob. 13.33CPCh. 13 - Prob. 13.34CPCh. 13 - Prob. 13.35CPCh. 13 - Prob. 13.36CPCh. 13 - The following pictures represent the initial and...Ch. 13 - Prob. 13.38SPCh. 13 - Prob. 13.39SPCh. 13 - Prob. 13.40SPCh. 13 - Prob. 13.41SPCh. 13 - Prob. 13.42SPCh. 13 - Prob. 13.43SPCh. 13 - Prob. 13.44SPCh. 13 - Prob. 13.45SPCh. 13 - Prob. 13.46SPCh. 13 - Prob. 13.47SPCh. 13 - Prob. 13.48SPCh. 13 - Prob. 13.49SPCh. 13 - Prob. 13.50SPCh. 13 - Prob. 13.51SPCh. 13 - Prob. 13.52SPCh. 13 - Prob. 13.53SPCh. 13 - Prob. 13.54SPCh. 13 - Prob. 13.55SPCh. 13 - Prob. 13.56SPCh. 13 - Prob. 13.57SPCh. 13 - Prob. 13.58SPCh. 13 - Prob. 13.59SPCh. 13 - Prob. 13.60SPCh. 13 - Prob. 13.61SPCh. 13 - Prob. 13.62SPCh. 13 - Prob. 13.63SPCh. 13 - Prob. 13.64SPCh. 13 - Prob. 13.65SPCh. 13 - Prob. 13.66SPCh. 13 - Prob. 13.67SPCh. 13 - Prob. 13.68SPCh. 13 - Prob. 13.69SPCh. 13 - Prob. 13.70SPCh. 13 - Prob. 13.71SPCh. 13 - Prob. 13.72SPCh. 13 - Prob. 13.73SPCh. 13 - Gaseous indium dihydride is formed from the...Ch. 13 - Prob. 13.75SPCh. 13 - Prob. 13.76SPCh. 13 - Prob. 13.77SPCh. 13 - Prob. 13.78SPCh. 13 - Prob. 13.79SPCh. 13 - Prob. 13.80SPCh. 13 - Prob. 13.81SPCh. 13 - The value of Kc for the reaction of acetic acid...Ch. 13 - In a basic aqueous solution, chloromethane...Ch. 13 - Prob. 13.84SPCh. 13 - Prob. 13.85SPCh. 13 - Prob. 13.86SPCh. 13 - Prob. 13.87SPCh. 13 - Prob. 13.88SPCh. 13 - Prob. 13.89SPCh. 13 - Prob. 13.90SPCh. 13 - Prob. 13.91SPCh. 13 - Prob. 13.92SPCh. 13 - Consider the endothermic reaction Fe3+ (aq) + Cl...Ch. 13 - Prob. 13.94SPCh. 13 - Prob. 13.95SPCh. 13 - Prob. 13.96SPCh. 13 - Prob. 13.97SPCh. 13 - Prob. 13.98CHPCh. 13 - Prob. 13.99CHPCh. 13 - Prob. 13.100CHPCh. 13 - Prob. 13.101CHPCh. 13 - Prob. 13.102CHPCh. 13 - Prob. 13.103CHPCh. 13 - Prob. 13.104CHPCh. 13 - Prob. 13.105CHPCh. 13 - Refining petroleum involves cracking large...Ch. 13 - Prob. 13.107CHPCh. 13 - Prob. 13.108CHPCh. 13 - Prob. 13.109CHPCh. 13 - Prob. 13.110CHPCh. 13 - At 1000 K, Kp = 2.1 106 and H = 107.7 kJ for the...Ch. 13 - Consider the gas-phase decomposition of NOBr: 2...Ch. 13 - At 100C, Kc = 4.72 for the reaction 2 NO2(g) ...Ch. 13 - Prob. 13.114CHPCh. 13 - Prob. 13.115CHPCh. 13 - Prob. 13.116CHPCh. 13 - Prob. 13.117CHPCh. 13 - Prob. 13.118CHPCh. 13 - Prob. 13.119CHPCh. 13 - Prob. 13.120CHPCh. 13 - Prob. 13.121CHPCh. 13 - Prob. 13.122CHPCh. 13 - Prob. 13.123CHPCh. 13 - Prob. 13.124CHPCh. 13 - Prob. 13.125MPCh. 13 - Prob. 13.126MPCh. 13 - The equilibrium constant Kc for the gas-phase...Ch. 13 - Prob. 13.128MPCh. 13 - Prob. 13.129MPCh. 13 - Prob. 13.130MPCh. 13 - Prob. 13.131MPCh. 13 - Prob. 13.132MPCh. 13 - Consider the sublimation of mothballs at 27C in a...Ch. 13 - Prob. 13.134MPCh. 13 - Prob. 13.135MPCh. 13 - For the decomposition reaction PCl5(g) PCl3(g) +...Ch. 13 - Prob. 13.137MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY