General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.98CHP
Interpretation Introduction

Interpretation:

The equilibrium molar concentrations of all chemical species in given reactionwhen 0.20 mol of HI is injected into an empty 500.0 mL contianer has to be calculated.

Concept introduction:

Calculation of equilibrium concentration from initial concentration:

  • The balanced equation for given reaction has to be written.
  • Set up an equilibrium table to calculate x value
  • The value of x is solved by substituting concentrations of chemical species in equilibrium constant expression.
  • The concentration of chemical species at equilibrium is calculated from value of x

Equilibrium constant(Kc):

Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.

Consider the reaction where A reacts to give B.

aAbB

Rate of forward reaction = Rate of reverse reactionkf[A]a=kr[B]b

On rearranging,

[B]b[A]a=kfkr=Kc

Where,

kf is the rate constant of the forward reaction.

kr is the rate constant of the reverse reaction.

Kc is the equilibrium constant.

Blurred answer
Students have asked these similar questions
Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?
Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. 2.2 mol of NaOH is added to 1.0 L of a 1.4M HF solution. acids: П bases: Х other: ☐ ப acids: 0.51 mol of KOH is added to 1.0 L of a solution that is bases: 1.3M in both HF and NaF. other: ☐ 00. 18 Ar
Using reaction free energy to predict equilibrium composition Consider the following equilibrium: N2O4 (g) 2NO2 (g) AG⁰ = 5.4 kJ Now suppose a reaction vessel is filled with 1.68 atm of dinitrogen tetroxide (N204) at 148. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2O4 tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. yes no 0.42 atm ☑ 5 0/5 ? مله Ar

Chapter 13 Solutions

General Chemistry: Atoms First

Ch. 13.6 - Prob. 13.11CPCh. 13.6 - Prob. 13.12PCh. 13.6 - Prob. 13.13PCh. 13.6 - Prob. 13.14PCh. 13.6 - Prob. 13.15PCh. 13.6 - Prob. 13.16PCh. 13.8 - Prob. 13.17PCh. 13.9 - Prob. 13.18PCh. 13.9 - Prob. 13.19CPCh. 13.10 - Prob. 13.20PCh. 13.10 - Prob. 13.21PCh. 13.10 - Prob. 13.22CPCh. 13.11 - Prob. 13.23PCh. 13.11 - Prob. 13.24PCh. 13.11 - Prob. 13.25PCh. 13 - Consider the interconversion of A molecules (red...Ch. 13 - Prob. 13.27CPCh. 13 - Prob. 13.28CPCh. 13 - Prob. 13.29CPCh. 13 - Prob. 13.30CPCh. 13 - Prob. 13.31CPCh. 13 - Prob. 13.32CPCh. 13 - Prob. 13.33CPCh. 13 - Prob. 13.34CPCh. 13 - Prob. 13.35CPCh. 13 - Prob. 13.36CPCh. 13 - The following pictures represent the initial and...Ch. 13 - Prob. 13.38SPCh. 13 - Prob. 13.39SPCh. 13 - Prob. 13.40SPCh. 13 - Prob. 13.41SPCh. 13 - Prob. 13.42SPCh. 13 - Prob. 13.43SPCh. 13 - Prob. 13.44SPCh. 13 - Prob. 13.45SPCh. 13 - Prob. 13.46SPCh. 13 - Prob. 13.47SPCh. 13 - Prob. 13.48SPCh. 13 - Prob. 13.49SPCh. 13 - Prob. 13.50SPCh. 13 - Prob. 13.51SPCh. 13 - Prob. 13.52SPCh. 13 - Prob. 13.53SPCh. 13 - Prob. 13.54SPCh. 13 - Prob. 13.55SPCh. 13 - Prob. 13.56SPCh. 13 - Prob. 13.57SPCh. 13 - Prob. 13.58SPCh. 13 - Prob. 13.59SPCh. 13 - Prob. 13.60SPCh. 13 - Prob. 13.61SPCh. 13 - Prob. 13.62SPCh. 13 - Prob. 13.63SPCh. 13 - Prob. 13.64SPCh. 13 - Prob. 13.65SPCh. 13 - Prob. 13.66SPCh. 13 - Prob. 13.67SPCh. 13 - Prob. 13.68SPCh. 13 - Prob. 13.69SPCh. 13 - Prob. 13.70SPCh. 13 - Prob. 13.71SPCh. 13 - Prob. 13.72SPCh. 13 - Prob. 13.73SPCh. 13 - Gaseous indium dihydride is formed from the...Ch. 13 - Prob. 13.75SPCh. 13 - Prob. 13.76SPCh. 13 - Prob. 13.77SPCh. 13 - Prob. 13.78SPCh. 13 - Prob. 13.79SPCh. 13 - Prob. 13.80SPCh. 13 - Prob. 13.81SPCh. 13 - The value of Kc for the reaction of acetic acid...Ch. 13 - In a basic aqueous solution, chloromethane...Ch. 13 - Prob. 13.84SPCh. 13 - Prob. 13.85SPCh. 13 - Prob. 13.86SPCh. 13 - Prob. 13.87SPCh. 13 - Prob. 13.88SPCh. 13 - Prob. 13.89SPCh. 13 - Prob. 13.90SPCh. 13 - Prob. 13.91SPCh. 13 - Prob. 13.92SPCh. 13 - Consider the endothermic reaction Fe3+ (aq) + Cl...Ch. 13 - Prob. 13.94SPCh. 13 - Prob. 13.95SPCh. 13 - Prob. 13.96SPCh. 13 - Prob. 13.97SPCh. 13 - Prob. 13.98CHPCh. 13 - Prob. 13.99CHPCh. 13 - Prob. 13.100CHPCh. 13 - Prob. 13.101CHPCh. 13 - Prob. 13.102CHPCh. 13 - Prob. 13.103CHPCh. 13 - Prob. 13.104CHPCh. 13 - Prob. 13.105CHPCh. 13 - Refining petroleum involves cracking large...Ch. 13 - Prob. 13.107CHPCh. 13 - Prob. 13.108CHPCh. 13 - Prob. 13.109CHPCh. 13 - Prob. 13.110CHPCh. 13 - At 1000 K, Kp = 2.1 106 and H = 107.7 kJ for the...Ch. 13 - Consider the gas-phase decomposition of NOBr: 2...Ch. 13 - At 100C, Kc = 4.72 for the reaction 2 NO2(g) ...Ch. 13 - Prob. 13.114CHPCh. 13 - Prob. 13.115CHPCh. 13 - Prob. 13.116CHPCh. 13 - Prob. 13.117CHPCh. 13 - Prob. 13.118CHPCh. 13 - Prob. 13.119CHPCh. 13 - Prob. 13.120CHPCh. 13 - Prob. 13.121CHPCh. 13 - Prob. 13.122CHPCh. 13 - Prob. 13.123CHPCh. 13 - Prob. 13.124CHPCh. 13 - Prob. 13.125MPCh. 13 - Prob. 13.126MPCh. 13 - The equilibrium constant Kc for the gas-phase...Ch. 13 - Prob. 13.128MPCh. 13 - Prob. 13.129MPCh. 13 - Prob. 13.130MPCh. 13 - Prob. 13.131MPCh. 13 - Prob. 13.132MPCh. 13 - Consider the sublimation of mothballs at 27C in a...Ch. 13 - Prob. 13.134MPCh. 13 - Prob. 13.135MPCh. 13 - For the decomposition reaction PCl5(g) PCl3(g) +...Ch. 13 - Prob. 13.137MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
  • Text book image
    World of Chemistry, 3rd edition
    Chemistry
    ISBN:9781133109655
    Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
    Publisher:Brooks / Cole / Cengage Learning
    Text book image
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY