Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
bartleby

Videos

Question
Book Icon
Chapter 11.6, Problem 14PSB

a.

To determine

To calculate:Thearea of shaded part which contains circle and square.

a.

Expert Solution
Check Mark

Answer to Problem 14PSB

The area of shaded part is 21.46 units2 .

Explanation of Solution

Given information:

A square with side as 10 and circle with diameter as 10.

Formula used:

Area of a circle: A=πr2

r = radius of a circle.

Area of a square: A=s2

s = side

  Ashaded part=Asquare-Acircle

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.6, Problem 14PSB , additional homework tip  1

  d=10r=d2=102=5

Area of a circle: A=πr2

  A=π(5)2=25π

Area of a square: A=s2

  A=(10)2=100

  Ashaded part=Asquare-AcircleAshaded part=100-25πAshaded part=21.46 units2

b.

To determine

To calculate: The area of shaded part which contains circle and triangle.

b.

Expert Solution
Check Mark

Answer to Problem 14PSB

The area of shaded part is 253-253π .

Explanation of Solution

Given information:

An equilateral triangle with each side10.

Formula used:

Area of a circle: A=πr2

r = radius of a circle.

Area of equilateral triangle: A=s243

s = side of equilateral triangle.

  Ashaded part=Atriangle-Acircle

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.6, Problem 14PSB , additional homework tip  2

Area of equilateral triangle: A=s243

  A=(10)243=253

ΔBOD is 30°6090Δ

  BD=5,so OD=53=533

Area of a circle: A=πr2

  A=π(533)2=253π

  Ashaded part=Atriangle-AcircleAshaded part=253-253π

c.

To determine

To find: The area of shaded part which contains sectors and square.

c.

Expert Solution
Check Mark

Answer to Problem 14PSB

The area of shaded part is 100-25π .

Explanation of Solution

Given information:

A square with side as 10 and radius as 5.

Formula used:

Area of a circle: A=πr2

r = radius of a circle.

Area of Sector =(measure of arc360o)πr2

r = radius of a circle.

  Ashaded part=Asquare-Asectors

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.6, Problem 14PSB , additional homework tip  3

Area of square: A=s2

  A=(10)2=100

  r=12*side=102=5

  Asector=(measure of arc360o)πr2 =( 9 0 o 36 0 o )π (5) 2 =14*25π=25π4

There are 4 sectors.

  Asectors=4*Asector=4*25π4=25π

  Ashaded part=Asquare-AsectorsAshaded part=100-25π

d.

To determine

To find the area of shaded part which contains sectors and triangle.

d.

Expert Solution
Check Mark

Answer to Problem 14PSB

The area of shaded part is 253-25π2 .

Explanation of Solution

Given information:

A triangle with side as 10.

Formula used:

Area of equilateral triangle: A=s243

s = side of equilateral triangle.

Area of Sector =(measure of arc360o)πr2

r = radius of a circle.

  AShaded part=ASquareASectors

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.6, Problem 14PSB , additional homework tip  4

Area of equilateral triangle: A=s243

  A=(10)243=253

All the sectors are congruent. The radius of each sector is 5.(Two tangent theorem)

  r=12*side=102=5Asector=(measure of arc360o)πr2 =( 6 0 o 36 0 o )π (5) 2 =16*25π=25π6

There are 3 sectors.

  Asectors=3*Asector=3*25π6=25π2

  Ashaded part=Atriangle-AsectorsAshaded part=253-25π2

e.

To determine

To find: The area of shaded part which contains circle and square.

e.

Expert Solution
Check Mark

Answer to Problem 14PSB

The area of shaded part is 50π-100 .

Explanation of Solution

Given information:

A square with side as 10.

Formula used:

Area of a circle: A=πr2

r = radius of a circle.

Area of a square: A=s2

s = side

  Ashaded part=Asquare-Acircle

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.6, Problem 14PSB , additional homework tip  5

  Diagonal=side2Diagonal=102Diameter=Diagonal=102d=102r=d2=1022=52

Area of a circle: A=πr2

  A=π(52)2=50π

Area of a square: A=s2

  A=(10)2=100

  Ashaded part=Acircle-AsquareAshaded part=50π-100

f.

To determine

To calculate: The area of shaded part which contains circle and triangle.

f.

Expert Solution
Check Mark

Answer to Problem 14PSB

The area of shaded part is 1503-75π .

Explanation of Solution

Given information:

An equilateral triangle with each side10.

Formula used:

Area of a circle: A=πr2

r = radius of a circle.

Area of equilateral triangle: A=s243

s = side of equilateral triangle.

  AShaded part=AHexagonAcircle

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.6, Problem 14PSB , additional homework tip  6

A hexagon can be divided into six equilateral triangles.

  Ahexagon=6(s243)Ahexagon=6((10)243)=6(253)=1503

Radius of circle is equal to apothem hexagon which is equal to altitude of a triangle.

The altitude divides the equilateral triangle into two 30°6090Δ's .

  The base=12*10Altitude=base3=53Altituderadius=53

Area of a circle: A=πr2

  A=π(53)2=75π

  Ashaded part=Ahexagon-AcircleAshaded part=1503-75π

Chapter 11 Solutions

Geometry For Enjoyment And Challenge

Ch. 11.1 - Prob. 11PSBCh. 11.1 - Prob. 12PSBCh. 11.1 - Prob. 13PSBCh. 11.1 - Prob. 14PSBCh. 11.1 - Prob. 15PSBCh. 11.1 - Prob. 16PSCCh. 11.1 - Prob. 17PSCCh. 11.2 - Prob. 1PSACh. 11.2 - Prob. 2PSACh. 11.2 - Prob. 3PSACh. 11.2 - Prob. 4PSACh. 11.2 - Prob. 5PSACh. 11.2 - Prob. 6PSACh. 11.2 - Prob. 7PSACh. 11.2 - Prob. 8PSACh. 11.2 - Prob. 9PSACh. 11.2 - Prob. 10PSACh. 11.2 - Prob. 11PSACh. 11.2 - Prob. 12PSACh. 11.2 - Prob. 13PSBCh. 11.2 - Prob. 14PSBCh. 11.2 - Prob. 15PSBCh. 11.2 - Prob. 16PSBCh. 11.2 - Prob. 17PSBCh. 11.2 - Prob. 18PSBCh. 11.2 - Prob. 19PSBCh. 11.2 - Prob. 20PSBCh. 11.2 - Prob. 21PSBCh. 11.2 - Prob. 22PSBCh. 11.2 - Prob. 23PSBCh. 11.2 - Prob. 24PSBCh. 11.2 - Prob. 25PSBCh. 11.2 - Prob. 26PSCCh. 11.2 - Prob. 27PSCCh. 11.2 - Prob. 28PSCCh. 11.2 - Prob. 29PSCCh. 11.2 - Prob. 30PSCCh. 11.2 - Prob. 31PSCCh. 11.2 - Prob. 32PSCCh. 11.2 - Prob. 33PSCCh. 11.3 - Prob. 1PSACh. 11.3 - Prob. 2PSACh. 11.3 - Prob. 3PSACh. 11.3 - Prob. 4PSACh. 11.3 - Prob. 5PSACh. 11.3 - Prob. 6PSACh. 11.3 - Prob. 7PSBCh. 11.3 - Prob. 8PSBCh. 11.3 - Prob. 9PSBCh. 11.3 - Prob. 10PSBCh. 11.3 - Prob. 11PSBCh. 11.3 - Prob. 12PSBCh. 11.3 - Prob. 13PSBCh. 11.3 - Prob. 14PSCCh. 11.3 - Prob. 15PSCCh. 11.3 - Prob. 16PSCCh. 11.3 - Prob. 17PSCCh. 11.3 - Prob. 18PSCCh. 11.3 - Prob. 19PSCCh. 11.3 - Prob. 20PSCCh. 11.4 - Prob. 1PSACh. 11.4 - Prob. 2PSACh. 11.4 - Prob. 3PSACh. 11.4 - Prob. 4PSBCh. 11.4 - Prob. 5PSBCh. 11.4 - Prob. 6PSBCh. 11.4 - Prob. 7PSBCh. 11.4 - Prob. 8PSBCh. 11.4 - Prob. 9PSBCh. 11.4 - Prob. 10PSCCh. 11.4 - Prob. 11PSCCh. 11.4 - Prob. 12PSCCh. 11.4 - Prob. 13PSCCh. 11.5 - Prob. 1PSACh. 11.5 - Prob. 2PSACh. 11.5 - Prob. 3PSACh. 11.5 - Prob. 4PSACh. 11.5 - Prob. 5PSACh. 11.5 - Prob. 6PSACh. 11.5 - Prob. 7PSACh. 11.5 - Prob. 8PSACh. 11.5 - Prob. 9PSACh. 11.5 - Prob. 10PSACh. 11.5 - Prob. 11PSACh. 11.5 - Prob. 12PSBCh. 11.5 - Prob. 13PSBCh. 11.5 - Prob. 14PSBCh. 11.5 - Prob. 15PSBCh. 11.5 - Prob. 16PSBCh. 11.5 - Prob. 17PSBCh. 11.5 - Prob. 18PSBCh. 11.5 - Prob. 19PSCCh. 11.5 - Prob. 20PSCCh. 11.5 - Prob. 21PSCCh. 11.5 - Prob. 22PSCCh. 11.5 - Prob. 23PSCCh. 11.5 - Prob. 24PSCCh. 11.5 - Prob. 25PSCCh. 11.5 - Prob. 26PSCCh. 11.6 - Prob. 1PSACh. 11.6 - Prob. 2PSACh. 11.6 - Prob. 3PSACh. 11.6 - Prob. 4PSACh. 11.6 - Prob. 5PSACh. 11.6 - Prob. 6PSACh. 11.6 - Prob. 7PSACh. 11.6 - Prob. 8PSBCh. 11.6 - Prob. 9PSBCh. 11.6 - Prob. 10PSBCh. 11.6 - Prob. 11PSBCh. 11.6 - Prob. 12PSBCh. 11.6 - Prob. 13PSBCh. 11.6 - Prob. 14PSBCh. 11.6 - Prob. 15PSBCh. 11.6 - Prob. 16PSBCh. 11.6 - Prob. 17PSBCh. 11.6 - Prob. 18PSCCh. 11.6 - Prob. 19PSCCh. 11.6 - Prob. 20PSCCh. 11.6 - Prob. 21PSCCh. 11.6 - Prob. 22PSCCh. 11.6 - Prob. 23PSCCh. 11.7 - Prob. 1PSACh. 11.7 - Prob. 2PSACh. 11.7 - Prob. 3PSACh. 11.7 - Prob. 4PSACh. 11.7 - Prob. 5PSACh. 11.7 - Prob. 6PSACh. 11.7 - Prob. 7PSACh. 11.7 - Prob. 8PSACh. 11.7 - Prob. 9PSBCh. 11.7 - Prob. 10PSBCh. 11.7 - Prob. 11PSBCh. 11.7 - Prob. 12PSBCh. 11.7 - Prob. 13PSBCh. 11.7 - Prob. 14PSBCh. 11.7 - Prob. 15PSBCh. 11.7 - Prob. 16PSBCh. 11.7 - Prob. 17PSBCh. 11.7 - Prob. 18PSCCh. 11.7 - Prob. 19PSCCh. 11.7 - Prob. 20PSCCh. 11.7 - Prob. 21PSCCh. 11.7 - Prob. 22PSCCh. 11.8 - Prob. 1PSACh. 11.8 - Prob. 2PSACh. 11.8 - Prob. 3PSACh. 11.8 - Prob. 4PSBCh. 11.8 - Prob. 5PSBCh. 11.8 - Prob. 6PSBCh. 11.8 - Prob. 7PSBCh. 11.8 - Prob. 8PSBCh. 11.8 - Prob. 9PSBCh. 11.8 - Prob. 10PSBCh. 11.8 - Prob. 11PSCCh. 11.8 - Prob. 12PSCCh. 11.8 - Prob. 13PSCCh. 11 - Prob. 1RPCh. 11 - Prob. 2RPCh. 11 - Prob. 3RPCh. 11 - Prob. 4RPCh. 11 - Prob. 5RPCh. 11 - Prob. 6RPCh. 11 - Prob. 7RPCh. 11 - Prob. 8RPCh. 11 - Prob. 9RPCh. 11 - Prob. 10RPCh. 11 - Prob. 11RPCh. 11 - Prob. 12RPCh. 11 - Prob. 13RPCh. 11 - Prob. 14RPCh. 11 - Prob. 15RPCh. 11 - Prob. 16RPCh. 11 - Prob. 17RPCh. 11 - Prob. 18RPCh. 11 - Prob. 19RPCh. 11 - Prob. 20RPCh. 11 - Prob. 21RPCh. 11 - Prob. 22RPCh. 11 - Prob. 23RPCh. 11 - Prob. 24RPCh. 11 - Prob. 25RPCh. 11 - Prob. 26RPCh. 11 - Prob. 27RPCh. 11 - Prob. 28RPCh. 11 - Prob. 29RPCh. 11 - Prob. 30RPCh. 11 - Prob. 31RPCh. 11 - Prob. 32RPCh. 11 - Prob. 33RPCh. 11 - Prob. 34RPCh. 11 - Prob. 35RPCh. 11 - Prob. 36RPCh. 11 - Prob. 37RPCh. 11 - Prob. 38RPCh. 11 - Prob. 39RPCh. 11 - Prob. 40RPCh. 11 - Prob. 41RPCh. 11 - Prob. 42RPCh. 11 - Prob. 43RPCh. 11 - Prob. 44RPCh. 11 - Prob. 45RP

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Geometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
An Introduction to Area | Teaching Maths | EasyTeaching; Author: EasyTeaching;https://www.youtube.com/watch?v=_uKKl8R1xBM;License: Standard YouTube License, CC-BY
Area of a Rectangle, Triangle, Circle & Sector, Trapezoid, Square, Parallelogram, Rhombus, Geometry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=JnLDmw3bbuw;License: Standard YouTube License, CC-BY