Concept explainers
a.
To calculate: The area ratio of whole region ABC and shaded region ADC .
a.
Answer to Problem 26RP
The area ratio is
Explanation of Solution
Given information:
Side AB = 5,
Side AC = 9.
Formula used:
Area of triangle:
b = base of triangle
h = height of triangle
Calculation:
The height of both
The area ratio is as follows:
b.
To find: The area ratio of whole region DEF and shaded region DGF .
b.
Answer to Problem 26RP
The area ratio is
Explanation of Solution
Given information:
Side DE = 2,
Side EG = x ,
Side GF = 3,
Side DF = 5.
Formula used:
The below theorem is used:
Area of triangle:
b = base of triangle
h = height of triangle
Calculation:
Using Angle Bisector Theorem
The base of whole triangle
Base
The height of both triangles is the same, so the height of each can be set equal to h .
c.
To find: The area ratio of whole region PST and shaded region PQR .
c.
Answer to Problem 26RP
The area ratio is
Explanation of Solution
Given information:
Side ST = 10,
Side PQ = QS,
Side PR = RT.
Formula used:
The below Midline theorems is used:
The midline theorem claims that cutting along the midline of a triangle creates a segment that is parallel to the base and half as long.
The below similar figures theorem is used:
If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of ratio of their corresponding sides. This proves that the ratio of the area of two similar triangles is proportional to the squares of the corresponding sides of both the triangles.
Calculation:
Using Midline Theorem, the base of the shaded triangle is parallel to and is half of the base of the whole triangle.
Using Reflexive angle and two angles proven congruent by parallel lines implies corresponding angles are congruent.
The shaded triangle is similar to whole triangle by AA similarity rule.
By Similar Figures Theorem, we get
Side ST = 10
Chapter 11 Solutions
Geometry For Enjoyment And Challenge
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics (13th Edition)
Thinking Mathematically (6th Edition)
- из Review the deck below and determine its total square footage (add its deck and backsplash square footage together to get the result). Type your answer in the entry box and click Submit. 126 1/2" 5" backsplash A 158" CL 79" B 26" Type your answer here.arrow_forwardIn the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forwardSelect all that apply. 104 8 6 4 2 U U' -10 -8 -6 4 -2 2 4 6 10 -2 V' W' -4 -6 -8 -10 W V Select 2 correct answerts! The side lengths are equal in measure. The scale factor is 1/5. The figure has been enlarged in size. The center of dilation is (0.0) 8 10 Xarrow_forward
- In the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forwardQll consider the problem -abu+bou+cu=f., u=0 ondor I prove atu, ul conts. @ if Blu,v) = (b. 14, U) + ((4,0) prove that B244) = ((c- — ob)4;4) ③if c±vbo prove that acuius v. elliptic.arrow_forwardQ3: Define the linear functional J: H₁(2) R by ¡(v) = a(v, v) - L(v) Л Let u be the unique weak solution to a(u,v) = L(v) in H(2) and suppose that a(...) is a symmetric bilinear form on H(2) prove that 1- u is minimizer. 2- u is unique. 3- The minimizer J(u) can be rewritten under 1(u) = u Au-ub, algebraic form 1 2 Where A, b are repictively the stiffence matrix and the load vector Q4: A) Answer 1- show that the solution to -Au = f in A, u = 0 on a satisfies the stability Vullfll and show that ||V(u u)||||||2 - ||vu||2 2- Prove that Where lu-ul Chuz - !ull = a(u, u) = Vu. Vu dx + fu. uds B) Consider the bilinea forta Л a(u, v) = (Au, Av) (Vu, Vv + (Vu, v) + (u,v) Show that a(u, v) continues and V- elliptic on H(2)arrow_forward
- 7) In the diagram below of quadrilateral ABCD, E and F are points on AB and CD respectively, BE=DF, and AE = CF. Which conclusion can be proven? A 1) ED = FB 2) AB CD 3) ZA = ZC 4) ZAED/CFB E B D 0arrow_forward1) In parallelogram EFGH, diagonals EG and FH intersect at point I such that EI = 2x - 2 and EG = 3x + 11. Which of the following is the length of GH? a) 15 b) 28 c) 32 d) 56arrow_forward5) Which of the following are properties of all squares: 1. Congruent diagonals 2. Perpendicular diagonals 3. Diagonals that bisect vertex angles a) 1 and 2 only b) 1 and 3 only c) 2 and 3 only d) 1, 2, and 3arrow_forward
- 6) In an isosceles trapezoid HIJK it is known that IJ || KH. Which of the following must also be true? a) IJ = KH b) HIJK c) HIJK d) IJ KHarrow_forward4) When rectangle JKLM is plotted in the coordinate plane side JK has a slope equal to 3. What must be the slope of side MJ? a) 3/3 b) e 35 53 32 d) - 5arrow_forwardSolve for xarrow_forward
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning