Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
bartleby

Videos

Question
Book Icon
Chapter 11.3, Problem 8PSB

a.

To determine

To calculate: Total area of the given figure with upper base 7 and measure of an angle which is 60 .

a.

Expert Solution
Check Mark

Answer to Problem 8PSB

The total area of the given figure is 303 unit2

Explanation of Solution

Given:

The length of the upper base ( a )= 7

The measure of an angle is 60

Concept used:

Here, we are using the formula

Area of trapezoid = 12(a+b)×h

(Where, “ a ” is upper base, “ b ” is lower base and “ h” is height)

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.3, Problem 8PSB , additional homework tip  1

Here, we know that Sin θ=PH

In ΔAFE

→Sin 60=PH (here, “ P ” is perpendicular and “ H ” is hypotenuse)

  32=PAF

  32=P6

  P=33

Similarly, Tan 60=PB (here, “ P ” is perpendicular and “ B ” is base)

  3=33FE

Where FE is base

  FE"B"=3

Now, Area of trapezoid = 12(a+b)×h (here, “ a ” is upper base, “ b ” is lower base and “ h” is height)

12(7+3)×33

303

Conclusion: Hence, the total area of the given figure is 303 unit2

b.

To determine

To calculate:Total area of the given figure with the length of upper base which is 10 and median is 16

b.

Expert Solution
Check Mark

Answer to Problem 8PSB

The total area of the given figure is 52+1011 unit2

Explanation of Solution

Given: Lengths of upper base (a ) = 10

lower base( b)= 4

median ( m )= 16

Formula used:

Here, the formula is

Area of trapezoid = 12(a+b)×h

(here, “ a ” is upper base, “ b ” is lower base and “ h” is height)

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 11.3, Problem 8PSB , additional homework tip  2

Here, let area of trapezoid ABFC be A1

Area of trapezoid = 12(a+b)×h

(here, “ a ” is upper base, “ b ” is lower base and “ h” is height)

Firstly, we need to find the height of trapezoid ABFC

In ΔJBC

  (hypotenuse)2=(perpendicular)2+(base)2

  (BC)2=(BJ)2+(JC)2

  (5)2=(BJ)2+(3)2

  BJ=259=4

So, the height ( h ) of trapezoid ABFC is 4

Therefore, Area of the trapezoid ABFCwould be

  A1=12(AB+FC)×4

  A1=12(10+16)×4

  A1=52

Now, let area of trapezoid FCED be A2

Area of trapezoid = 12(a+b)×h

(here, “ a ” is upper base, “ b ” is lower base and “ h” is height)

Firstly, we need to find the height of trapezoid FCED

In ΔDIC

  (hypotenuse)2=(perpendicular)2+(base)2

  (DC)2=(ID)2+(IC)2

  (5)2=(ID)2+(6)2

  ID=3625=11

So, the height ( h ) of trapezoid FCED is 11

Therefore, Area of the trapezoid FCEDwould be

  A2=12(16+4)×11

  A2=1011

So, Total area = A1+A2

52+1011

Conclusion: Hence, the total area of the given figure is 52+1011 unit2

Chapter 11 Solutions

Geometry For Enjoyment And Challenge

Ch. 11.1 - Prob. 11PSBCh. 11.1 - Prob. 12PSBCh. 11.1 - Prob. 13PSBCh. 11.1 - Prob. 14PSBCh. 11.1 - Prob. 15PSBCh. 11.1 - Prob. 16PSCCh. 11.1 - Prob. 17PSCCh. 11.2 - Prob. 1PSACh. 11.2 - Prob. 2PSACh. 11.2 - Prob. 3PSACh. 11.2 - Prob. 4PSACh. 11.2 - Prob. 5PSACh. 11.2 - Prob. 6PSACh. 11.2 - Prob. 7PSACh. 11.2 - Prob. 8PSACh. 11.2 - Prob. 9PSACh. 11.2 - Prob. 10PSACh. 11.2 - Prob. 11PSACh. 11.2 - Prob. 12PSACh. 11.2 - Prob. 13PSBCh. 11.2 - Prob. 14PSBCh. 11.2 - Prob. 15PSBCh. 11.2 - Prob. 16PSBCh. 11.2 - Prob. 17PSBCh. 11.2 - Prob. 18PSBCh. 11.2 - Prob. 19PSBCh. 11.2 - Prob. 20PSBCh. 11.2 - Prob. 21PSBCh. 11.2 - Prob. 22PSBCh. 11.2 - Prob. 23PSBCh. 11.2 - Prob. 24PSBCh. 11.2 - Prob. 25PSBCh. 11.2 - Prob. 26PSCCh. 11.2 - Prob. 27PSCCh. 11.2 - Prob. 28PSCCh. 11.2 - Prob. 29PSCCh. 11.2 - Prob. 30PSCCh. 11.2 - Prob. 31PSCCh. 11.2 - Prob. 32PSCCh. 11.2 - Prob. 33PSCCh. 11.3 - Prob. 1PSACh. 11.3 - Prob. 2PSACh. 11.3 - Prob. 3PSACh. 11.3 - Prob. 4PSACh. 11.3 - Prob. 5PSACh. 11.3 - Prob. 6PSACh. 11.3 - Prob. 7PSBCh. 11.3 - Prob. 8PSBCh. 11.3 - Prob. 9PSBCh. 11.3 - Prob. 10PSBCh. 11.3 - Prob. 11PSBCh. 11.3 - Prob. 12PSBCh. 11.3 - Prob. 13PSBCh. 11.3 - Prob. 14PSCCh. 11.3 - Prob. 15PSCCh. 11.3 - Prob. 16PSCCh. 11.3 - Prob. 17PSCCh. 11.3 - Prob. 18PSCCh. 11.3 - Prob. 19PSCCh. 11.3 - Prob. 20PSCCh. 11.4 - Prob. 1PSACh. 11.4 - Prob. 2PSACh. 11.4 - Prob. 3PSACh. 11.4 - Prob. 4PSBCh. 11.4 - Prob. 5PSBCh. 11.4 - Prob. 6PSBCh. 11.4 - Prob. 7PSBCh. 11.4 - Prob. 8PSBCh. 11.4 - Prob. 9PSBCh. 11.4 - Prob. 10PSCCh. 11.4 - Prob. 11PSCCh. 11.4 - Prob. 12PSCCh. 11.4 - Prob. 13PSCCh. 11.5 - Prob. 1PSACh. 11.5 - Prob. 2PSACh. 11.5 - Prob. 3PSACh. 11.5 - Prob. 4PSACh. 11.5 - Prob. 5PSACh. 11.5 - Prob. 6PSACh. 11.5 - Prob. 7PSACh. 11.5 - Prob. 8PSACh. 11.5 - Prob. 9PSACh. 11.5 - Prob. 10PSACh. 11.5 - Prob. 11PSACh. 11.5 - Prob. 12PSBCh. 11.5 - Prob. 13PSBCh. 11.5 - Prob. 14PSBCh. 11.5 - Prob. 15PSBCh. 11.5 - Prob. 16PSBCh. 11.5 - Prob. 17PSBCh. 11.5 - Prob. 18PSBCh. 11.5 - Prob. 19PSCCh. 11.5 - Prob. 20PSCCh. 11.5 - Prob. 21PSCCh. 11.5 - Prob. 22PSCCh. 11.5 - Prob. 23PSCCh. 11.5 - Prob. 24PSCCh. 11.5 - Prob. 25PSCCh. 11.5 - Prob. 26PSCCh. 11.6 - Prob. 1PSACh. 11.6 - Prob. 2PSACh. 11.6 - Prob. 3PSACh. 11.6 - Prob. 4PSACh. 11.6 - Prob. 5PSACh. 11.6 - Prob. 6PSACh. 11.6 - Prob. 7PSACh. 11.6 - Prob. 8PSBCh. 11.6 - Prob. 9PSBCh. 11.6 - Prob. 10PSBCh. 11.6 - Prob. 11PSBCh. 11.6 - Prob. 12PSBCh. 11.6 - Prob. 13PSBCh. 11.6 - Prob. 14PSBCh. 11.6 - Prob. 15PSBCh. 11.6 - Prob. 16PSBCh. 11.6 - Prob. 17PSBCh. 11.6 - Prob. 18PSCCh. 11.6 - Prob. 19PSCCh. 11.6 - Prob. 20PSCCh. 11.6 - Prob. 21PSCCh. 11.6 - Prob. 22PSCCh. 11.6 - Prob. 23PSCCh. 11.7 - Prob. 1PSACh. 11.7 - Prob. 2PSACh. 11.7 - Prob. 3PSACh. 11.7 - Prob. 4PSACh. 11.7 - Prob. 5PSACh. 11.7 - Prob. 6PSACh. 11.7 - Prob. 7PSACh. 11.7 - Prob. 8PSACh. 11.7 - Prob. 9PSBCh. 11.7 - Prob. 10PSBCh. 11.7 - Prob. 11PSBCh. 11.7 - Prob. 12PSBCh. 11.7 - Prob. 13PSBCh. 11.7 - Prob. 14PSBCh. 11.7 - Prob. 15PSBCh. 11.7 - Prob. 16PSBCh. 11.7 - Prob. 17PSBCh. 11.7 - Prob. 18PSCCh. 11.7 - Prob. 19PSCCh. 11.7 - Prob. 20PSCCh. 11.7 - Prob. 21PSCCh. 11.7 - Prob. 22PSCCh. 11.8 - Prob. 1PSACh. 11.8 - Prob. 2PSACh. 11.8 - Prob. 3PSACh. 11.8 - Prob. 4PSBCh. 11.8 - Prob. 5PSBCh. 11.8 - Prob. 6PSBCh. 11.8 - Prob. 7PSBCh. 11.8 - Prob. 8PSBCh. 11.8 - Prob. 9PSBCh. 11.8 - Prob. 10PSBCh. 11.8 - Prob. 11PSCCh. 11.8 - Prob. 12PSCCh. 11.8 - Prob. 13PSCCh. 11 - Prob. 1RPCh. 11 - Prob. 2RPCh. 11 - Prob. 3RPCh. 11 - Prob. 4RPCh. 11 - Prob. 5RPCh. 11 - Prob. 6RPCh. 11 - Prob. 7RPCh. 11 - Prob. 8RPCh. 11 - Prob. 9RPCh. 11 - Prob. 10RPCh. 11 - Prob. 11RPCh. 11 - Prob. 12RPCh. 11 - Prob. 13RPCh. 11 - Prob. 14RPCh. 11 - Prob. 15RPCh. 11 - Prob. 16RPCh. 11 - Prob. 17RPCh. 11 - Prob. 18RPCh. 11 - Prob. 19RPCh. 11 - Prob. 20RPCh. 11 - Prob. 21RPCh. 11 - Prob. 22RPCh. 11 - Prob. 23RPCh. 11 - Prob. 24RPCh. 11 - Prob. 25RPCh. 11 - Prob. 26RPCh. 11 - Prob. 27RPCh. 11 - Prob. 28RPCh. 11 - Prob. 29RPCh. 11 - Prob. 30RPCh. 11 - Prob. 31RPCh. 11 - Prob. 32RPCh. 11 - Prob. 33RPCh. 11 - Prob. 34RPCh. 11 - Prob. 35RPCh. 11 - Prob. 36RPCh. 11 - Prob. 37RPCh. 11 - Prob. 38RPCh. 11 - Prob. 39RPCh. 11 - Prob. 40RPCh. 11 - Prob. 41RPCh. 11 - Prob. 42RPCh. 11 - Prob. 43RPCh. 11 - Prob. 44RPCh. 11 - Prob. 45RP

Additional Math Textbook Solutions

Find more solutions based on key concepts
Show that 34=12 using each of the following models. a. Repeated-addition number line b. Rectangular array c. Ar...

A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)

The equivalent expression of x(y+z) by using the commutative property.

Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)

Find how many SDs above the mean price would be predicted to cost.

Intro Stats, Books a la Carte Edition (5th Edition)

Knowledge Booster
Background pattern image
Geometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
An Introduction to Area | Teaching Maths | EasyTeaching; Author: EasyTeaching;https://www.youtube.com/watch?v=_uKKl8R1xBM;License: Standard YouTube License, CC-BY
Area of a Rectangle, Triangle, Circle & Sector, Trapezoid, Square, Parallelogram, Rhombus, Geometry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=JnLDmw3bbuw;License: Standard YouTube License, CC-BY